Stem cell transplants help kidney damage

Feb 14, 2011

Transplanting autologous renal progenitor cells (RPCs), (kidney stem cells derived from self-donors), into rat models with kidney damage from pyelonephritis - a type of urinary infection that has reached the kidney - has been found to improve kidney structure and function.

The study, authored by a research team from the Tehran University of Medical Sciences, is published in the current issue of Cell Medicine.

"Advancements in stem cell therapies and hold great promise for regenerative nephrology," said Dr. Abdol-Mohammad Kajbafzadeh, corresponding author. "Our RPC transplant study demonstrated benefits for pyelonephritis, a disease characterized by severe inflammation, renal function impairment and eventual scarring, and which remains a major cause of end-stage-renal disease worldwide."

The researchers divided 27 rats into three groups, two of which were modeled with an induced pyelonephritis in their right kidneys, while the third group did not have induced disease. RPCs were obtained from the diseased animals' left kidneys and injected into the right kidney six weeks later. Two weeks after injection, tubular atrophy was reduced. After four weeks, fibrosis was reduced and after sixty days, right renal tissue integrity was "significantly improved."

"We propose that kidney augmentation was mainly due to functional tissue regeneration following cellular transplantation," said Dr. Kajbafzadeh. "Kidney-specific stem/ might be the most appropriate candidates for transplantation because of their inherent organ-specific differentiation and their capacity to modulate tissue remodeling in chronic nephropathies."

The researchers concluded that because renal fibrosis is a common and ultimate pathway leading to end-stage , amelioration of fibrosis might be of major clinical relevance.

"Transplanting RPCs showed the potential for partial augmentation of kidney structure and function in pyelonephritis," said Dr. Kajbafzadeh.
"This is one of the first studies to demonstrate improved renal function after cell transplantation. The translation of this study into larger clinical models will be very relevant to validate the success of this small animal study." said Dr. Amit Patel, Section Editor Cell Medicine, Associate Professor of Surgery, University of Utah.

Explore further: Unlocking the secrets of pulmonary hypertension

More information: Kajbafzadeh, A-M.; Elmi, A.; Talab, S. S.; Sadeghi, Z.; Emami, H.; Sotoudeh, M. Autografting of Renal Progenitor Cells Ameliorates Kidney Damage in Experimental Model of Pyelonephritis. Cell Med. 1(3): 115-122; 2010.

Provided by Cell Transplantation Center of Excellence for Aging and Brain Repair

not rated yet
add to favorites email to friend print save as pdf

Related Stories

Discovery could lead to much-needed kidney failure treatment

Mar 12, 2008

The unwanted activation of an important cell-signaling pathway may play a role in two kidney problems that are major causes of end-stage renal disease, scientists at the Albert Einstein College of Medicine of Yeshiva University ...

Adult kidney stem cells found in fish

Jan 26, 2011

(PhysOrg.com) -- It has long been a given that adult humans -- and mammals in general -- lack the capacity to grow new nephrons, the kidney?s delicate blood filtering tubules, which has meant that dialysis, and ultimately ...

Recommended for you

Cell death proteins key to fighting disease

6 hours ago

Melbourne researchers have uncovered key steps involved in programmed cell death, offering new targets for the treatment of diseases including lupus, cancers and neurodegenerative diseases.

Unlocking the secrets of pulmonary hypertension

22 hours ago

A UAlberta team has discovered that a protein that plays a critical role in metabolism, the process by which the cell generates energy from foods, is important for the development of pulmonary hypertension, a deadly disease.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.