Self-correcting robots, at-home 3-D printing are on horizon, says researcher at AAAS

Feb 22, 2011 By Anne Ju

Robots that can self-improve and machines that "print" products at home are technologies soon to become increasingly available, said Cornell's Hod Lipson at the 2011 American Association for the Advancement of Science (AAAS) annual meeting, Feb. 17-21.

Lipson, associate professor of mechanical and aerospace engineering and of computing and , said Feb. 19 that robots can observe and reconstruct their own behaviors and use this information to adapt to new circumstances.

Such advances are important because self-reflection plays a key role in accelerating adaptation by reducing costs of physical experimentation, he said. Similarly, the ability of a machine to reconstruct the morphology and behavior of other machines is important to cooperation and competition. Lipson demonstrated a number of experiments on self-reflecting robotic systems, arguing that reflective processes are essential in achieving meta-cognitive capacities, including consciousness and, ultimately, a form of self-awareness.

In a second talk (Feb. 21), Lipson discussed the emergence of solid free-form fabrication technology, which allows 3-D printing of various structures, layer by layer, from electronic blueprints. While this technology has been in existence for more than two decades, this process has recently been explored for . In particular, new developments in multimaterial printing may allow these compact "fabbers" to move from printing custom implants and scaffolds to "printing" live tissue.

His talk also touched on his experience with the open-source Fab@Home project and its use in printing a variety of biological and non-biological integrated systems. He concluded with some of the opportunities that this technology offers for moving from traditional to digital tissue constructs.

Lipson directs Cornell's Computational Synthesis group, which focuses on automatic design, fabrication and adaptation of virtual and physical machines. He has led work in such areas as evolutionary robotics, multimaterial functional rapid prototyping, machine self-replication and programmable self-assembly. He was one of five Cornell faculty members who presented at this year's AAAS meeting.

Explore further: Skin icons can tap into promise of smartwatch

add to favorites email to friend print save as pdf

Related Stories

Eureqa, the robot scientist (w/ Video)

Dec 07, 2009

(PhysOrg.com) -- A new program, Eureqa, takes raw data and formulates scientific laws to suit, and it is available by free download to all scientists.

3D printing for new tissues and organs

Jun 18, 2009

A more effective way to build plastic scaffolds on which new tissues and even whole organs might be grown in the laboratory is being developed by an international collaboration between teams in Portugal and the UK.

Recommended for you

Skin icons can tap into promise of smartwatch

5 hours ago

You have heard it before: smartwatches are cool wearables but critics remind us of the fact that their small size makes many actions cumbersome and they question how many people will really have them on their ...

Japan firm showcases Bat-Signal of the future

Oct 20, 2014

A free-floating image created by firing lasers into thin air was unveiled in Japan on Monday, offering the possibility one day of projecting messages into a cloudless sky, as seen in Batman.

Do we want an augmented reality or a transformed reality?

Oct 14, 2014

It seems we are headed towards a world where augmented reality (AR) systems will be as common as smartphones are today – it's already about to revolutionise medicine, entertainment, the lives of disabled peop ...

Can it be real? Augmented reality melds work, play

Oct 14, 2014

(AP)—Mark Skwarek is surrounded by infiltrating militants in New York's Central Park. He shoots one, then hearing a noise from behind, spins to take down another. All of a sudden, everything flashes red. ...

User comments : 0