Segregation behaviors and radial distribution of dopant atoms in silicon nanowires

Feb 28, 2011

National Institute for Material Science, Japan Science and Technology Agency and University of Tsukuba announced on February 4, 2011 that they succeeded in detecting nondestructively dynamic behaviors of doped impurities in Si nanowires (Si NWs) coated by SiO2 to make surrounding gate field-effect transistors. Details were presented in NANO Letters of American Chemical Society.

Understanding the dynamic behaviors of dopant atoms in Si NWs is the key to realize low-power and high-speed transistors using Si NWs. The segregation behavior of (B) and phosphorus (P) atoms in B- and P-doped Si NWs (20 nm in diameter) during thermal oxidation was closely analyzed.

Local vibrational peaks and Fano broadening in optical phonon peaks of B-doped Si NWs were used to detect the behavior of B. Electron spin resonance (ESR) signals from conduction electrons were suitable means for P-doped Si NWs.

The radial distribution of P atoms in Si NWs was also investigated to prove the difference in segregation behaviors between of P and B atoms.

B atoms were found to segregate preferentially in the surface oxide layer, whereas P atoms tend to accumulate around the interface inside the Si nanowire.

In addition, segregation of B atoms was found to be suppressed by the stress applied to Si NWs.

Explore further: Team finds electricity can be generated by dragging saltwater over graphene

More information: Naoki Fukuda, Shinya Ishida, Shigeki Yokono, Ryo Takiguchi, Jun Chen, Takashi Sekiguchi, and Kouichi Murakami, "Segragation Behaviors and Radial Distribution of Dopant Atoms in Silicon Nanowires", NANO Letters (2011) doi: 10.1021/nl103773e Published online 24 January 2011.

Provided by National Institute for Materials Science

not rated yet
add to favorites email to friend print save as pdf

Related Stories

Better student performance with peer learning

Oct 18, 2010

Engineering students with average grades from upper secondary school can manage difficult courses just as well as students with high grades. At least, if a group of them meet an older student once a week during the first ...

Recommended for you

First direct observations of excitons in motion achieved

Apr 16, 2014

A quasiparticle called an exciton—responsible for the transfer of energy within devices such as solar cells, LEDs, and semiconductor circuits—has been understood theoretically for decades. But exciton ...

User comments : 0

More news stories

Thinnest feasible nano-membrane produced

A new nano-membrane made out of the 'super material' graphene is extremely light and breathable. Not only can this open the door to a new generation of functional waterproof clothing, but also to ultra-rapid filtration. The ...

Wiring up carbon-based electronics

Carbon-based nanostructures such as nanotubes, graphene sheets, and nanoribbons are unique building blocks showing versatile nanomechanical and nanoelectronic properties. These materials which are ordered ...

Scientists tether lionfish to Cayman reefs

Research done by U.S. scientists in the Cayman Islands suggests that native predators can be trained to gobble up invasive lionfish that colonize regional reefs and voraciously prey on juvenile marine creatures.

Six Nepalese dead, six missing in Everest avalanche

At least six Nepalese climbing guides have been killed and six others are missing after an avalanche struck Mount Everest early Friday in one of the deadliest accidents on the world's highest peak, officials ...

White House updating online privacy policy

A new Obama administration privacy policy out Friday explains how the government will gather the user data of online visitors to WhiteHouse.gov, mobile apps and social media sites. It also clarifies that ...