Scientists say ocean currents cause microbes to filter light

Feb 24, 2011 by Denise Brehm

( -- Adding particles to liquids to make currents visible is a common practice in the study of fluid mechanics, one that was adopted and perfected by artist Paul Matisse in sculptures he calls Kalliroscopes. Matisse’s glass-enclosed liquid sculptures contain an object whose movement through the liquid creates whorls that can be seen only because elongated particles trailing the object align with the direction of the current; light reflects off the particles, making the current visible to the viewer.

Researchers at MIT recently demonstrated that this same phenomenon is responsible for the swirling patterns scientists typically see when they agitate a flask containing in water; many microbes are themselves elongated that make the whorls visible. More importantly, they say this phenomenon occurs in the ocean when elongated microbes caught in a current align horizontally with the ocean surface, affecting how much goes into the ocean and how much bounces off as backscatter. Because many ocean microbes, like large phytoplankton, have either an elongated shape or live in communities of long chains, this orientation to ocean currents could have a substantial effect on ocean light — which in turn influences photosynthesis and phytoplankton growth rates — as well as on satellite readings of light backscatter used to inform climate models or assess algal blooms.

In a quiescent ocean, phytoplankton are randomly oriented and light filters through easily. This random arrangement is usually assumed in models of light propagation in the ocean and in satellite readings. But fluid flow can change things.

“Even small shear rates can increase backscattering from blooms of large phytoplankton by more than 30 percent,” said Roman Stocker, Professor of Civil and Environmental Engineering at MIT and lead author on a paper about this work. “This implies that fluid flow, which is typically neglected in models of marine optics, may exert an important control on light propagation, influencing the rates of carbon fixation and how we estimate these rates via remote sensing.”

Another consideration is microbial size. Very small microbes (less than 1 micrometer in diameter) don’t align with the ocean current no matter what their shape. “These very small things don’t align because they are too vigorously kicked around by water molecules in an effect called Brownian motion,” said Stocker, who studies the biomechanics of the movements of ocean microbes, often in his own micro-version of a Kalliroscope called microfluidics. He recreates an environment in microfluidic devices about the size of a stick of gum and uses videomicroscopy to trace and record the microbes’ movements in response to food and current.

In this case, however, the research methodology was observation, followed by mathematical modeling (much of which was handled by graduate student Marcos, who created a model that coupled with optics), and subsequent experimentation carried out by graduate students Mitul Luhar and William Durham using a tabletop-sized device.

But the impetus for the research was an observance of swirling microbes in a flask of water and a question posed by Justin Seymour, a former postdoctoral fellow at MIT. “Justin walked up to me with a flask of microbes in water, shook it, and asked me what the swirls were,” said Stocker. “Now we know.”

In addition to Seymour, who is now a research fellow at the University of Technology Sydney, other co-authors on the paper are Marcos, Luhar and Durham; Professor James Mitchell of Flinders University in Adelaide, Australia; and Professor Andreas Macke of the Leibniz Institute for Tropospheric Research in Germany.

The researchers plan to test this mechanism in the field in a local environment suitable for experimentation, most likely a nearby lake.

Explore further: NASA sees Typhoon Matmo making second landfall in China

More information: “Microbial alignment in flow changes ocean light climate,” by Marcos, Justin Seymour, Mitul Luhar, William Durham, James Mitchell, Andreas Macke and Roman Stocker, in PNAS Early Edition online Feb. 21, 2011.… /1014576108.abstract

Related Stories

Regulating Earth's climate with micro-organisms

Nov 02, 2010

Scientists have sought to learn more about how the Earth's oceans absorb carbon dioxide and generally exchange gases with the atmosphere so they can better understand the corresponding effects on climate. ...

New research could help predict red tide

Feb 19, 2009

( -- Not far beneath the ocean's surface, tiny phytoplankton swimming upward in a daily commute toward morning light sometimes encounter the watery equivalent of Rod Serling's Twilight Zone: a ...

Recommended for you

Fires in the Northern Territories July 2014

2 hours ago

Environment Canada has issued a high health risk warning for Yellowknife and surrounding area because of heavy smoke in the region due to forest fires. In the image taken by the Aqua satellite, the smoke ...

How much magma is hiding beneath our feet?

3 hours ago

Molten rock (or magma) has a strong influence on our planet and its inhabitants, causing destructive volcanic eruptions and generating some of the giant mineral deposits. Our understanding of these phenomena ...

Oso disaster had its roots in earlier landslides

6 hours ago

The disastrous March 22 landslide that killed 43 people in the rural Washington state community of Oso involved the "remobilization" of a 2006 landslide on the same hillside, a new federally sponsored geological study concludes.

User comments : 0