Scientists identify a deadly tool in Salmonella's bag of tricks

Feb 03, 2011
This is a surface rendering of the structure of type III secretion needle complex, which is used by Salmonella to infect cells. Credit: Thomas Marlovits/Courtesy of Yale University

The potentially deadly bacterium Salmonella possesses a molecular machine that marshals the proteins it needs to hijack cellular mechanisms and infect millions worldwide.

In a paper published Feb. 3 online in , Yale University researchers describe in detail how , a major cause of food poisoning and typhoid fever, is able to make these proteins line in up in just the right sequence to invade host cells.

"These mechanisms present us with novel targets that might form the basis for the development of an entirely new class of anti-microbials," said Jorge Galan, senior author of the paper and the Lucille P. Markey Professor of Microbial Pathogenesis and chair of the Section of at Yale.

Galan's lab has been in the forefront of investigating the intricate mechanisms that microbes such as Salmonella use to infect foreign cells. In the new study, Galan and colleagues identify what they call a bacterial sorting platform, which attracts needed proteins and lines them up in a specific order. If the proteins do not line up properly, Salmonella, as well as many other bacterial pathogens, cannot "inject" them into host cells to commandeer functions, the lab has found.

Understanding how this machine works raises the possibility that new therapies can be developed which disable this delivery machine and therefore thwart the ability of the bacterium to become pathogenic. This process would not kill the bacteria as most antibiotics do, but would cripple its ability to do harm.

In theory, this means that bacteria such as Salmonella might not develop resistance to new therapies as quickly as they usually do to conventional antibiotics.

Salmonella sickens at least 40,000 people annually in the United States and kills about 400 people, according to the Centers for Disease Control.

Explore further: Fighting bacteria—with viruses

Related Stories

Researchers uncover secrets of salmonella's stealth attack

Apr 16, 2009

A single crafty protein allows the deadly bacterium Salmonella enterica to both invade cells lining the intestine and hijack cellular functions to avoid destruction, Yale researchers report in the April 17 issue of the jo ...

How bugs avoid getting sick after sex

Aug 18, 2006

Scientists at the Institute of Food Research in Norwich revealed today how the promiscuous Salmonella bacterium protects itself from getting ill after acquiring foreign DNA through "sex" with other bacteria. ...

Salmonella in garden birds responsive to antibiotics

Jun 02, 2008

Scientists at the University of Liverpool have found that Salmonella bacteria found in garden birds are sensitive to antibiotics, suggesting that the infection is unlike the bacteria found in livestock and humans.

Invasion without a stir

Dec 17, 2009

Bacteria of the genus Salmonella cause most food-borne illnesses. The bacteria attach to cells of the intestinal wall and induce their own ingestion by cells of the intestinal epithelium. Up till now, researchers assumed ...

Salmonella: Trickier than we imagined

Jun 13, 2008

Salmonella is serving up a surprise not only for tomato lovers around the country but also for scientists who study the rod-shaped bacterium that causes misery for millions of people.

Recommended for you

Fighting bacteria—with viruses

16 hours ago

Research published today in PLOS Pathogens reveals how viruses called bacteriophages destroy the bacterium Clostridium difficile (C. diff), which is becoming a serious problem in hospitals and healthcare institutes, due to its re ...

Atomic structure of key muscle component revealed

17 hours ago

Actin is the most abundant protein in the body, and when you look more closely at its fundamental role in life, it's easy to see why. It is the basis of most movement in the body, and all cells and components ...

Brand new technology detects probiotic organisms in food

Jul 23, 2014

In the food industr, ity is very important to ensure the quality and safety of products consumed by the population to improve their properties and reduce foodborne illness. Therefore, a team of Mexican researchers ...

Protein evolution follows a modular principle

Jul 23, 2014

Proteins impart shape and stability to cells, drive metabolic processes and transmit signals. To perform these manifold tasks, they fold into complex three-dimensional shapes. Scientists at the Max Planck ...

Report on viruses looks beyond disease

Jul 22, 2014

In contrast to their negative reputation as disease causing agents, some viruses can perform crucial biological and evolutionary functions that help to shape the world we live in today, according to a new report by the American ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

ubavontuba
3.7 / 5 (3) Feb 04, 2011
Strange how that looks like some sort of industrial drill bit.