Why the sandfish lizard wriggles as it does (w/ Video)

Feb 25, 2011 by report
Image credit: Daniel Goldman

(PhysOrg.com) -- The sandfish lizard (Scincus scincus) lives in the desert sands of North Africa and burrows through the sand by wriggling. Now scientists in the US have created a computer model that emulates the physics of the lizard and other burrowing animals.

Professor Daniel Goldman of the Complex Rheology And Biomechanics Laboratory (CRAB Lab) at the Georgia Institute of Technology in Atlanta, said it is not easy to study the movements of burrowing animals because sand grains bounce off each other wildly rather than creating the kind of flowing movements found when animals move through water or air.

Previous studies using revealed that the sandfish lizard moves through the sand by wriggling in S-shaped curves with their legs tucked in. Dr. Goldman said the wriggling movements of the lizard enable it to move at great speed, since it can cover two body lengths every second, but it was unclear at that time exactly how they achieve those speeds in sand.

This video is not supported by your browser at this time.
Video credit: Daniel Goldman

Goldman’s team then built a snake-like robot capable of moving in a similar way to the living lizard, and were able to control the extent of bending and wriggling as the robot moved. They filmed the robot moving through sand to determine how the amount of curling affected their movements.

The team followed with computer simulations of the swimming through a field of beads 3mm in diameter. Even with 3 mm beads rather than tiny grains of sand, the simulations needed the computing power of 20-30 ordinary PCs to run, and still took several days. They used the simulation to analyze the movement of every bead affected by the passing lizard. Both the living lizard and robot swam through the glass beads in the same way as they did through sand.

The simulation and robotic tests both gave the same answer: if the lizards curl too little they cannot provide enough power to push through the sand, while if they curl too much they do not move very far forward as they wriggle. The movements of the living lizard are close to optimum.

Why the sandfish lizard wriggles as it does
Image credit: Daniel Goldman

Dr Goldman also said the studies suggest that sandfish lizards dive into the sand and wriggle down into it to escape from predators as fast as possible. Burrowing into the sand also enables them to escape the scorching heat of the desert.

As a result of their experiments Goldman’s team were able to derive a mathematical theory and highly predictive capable of emulating the physics of sand and objects or animals moving through it. Dr Goldman said the model is the first really detailed, quantitative and accurate model of objects moving through an environment other than air or water.

The research could find applications in a number of fields involving objects beneath the surface, such as earthquake monitoring and landmine detection. It could also lead to robots designed to wriggle into the sub-surface on other planets, and the team is already talking to NASA representatives about the possibilities.

Explore further: Sensitive detection method may help impede illicit nuclear trafficking

More information: Mechanical models of sandfish locomotion reveal principles of high performance subsurface sand-swimming, Ryan D. Maladen, Yang Ding, Paul B. Umbanhowar, Adam Kamor, and Daniel I. Goldman, Journal of the Royal Society Interface, in press (2011).

Related Stories

How to stand out, lizard-style

Jan 20, 2011

(PhysOrg.com) -- If you've ever tried waving to someone distant in a bustling crowd, you'll have some idea of how hard it can be for small rainforest animals to signal to each other with so many other distractions ...

Recommended for you

Device turns flat surface into spherical antenna

Apr 14, 2014

By depositing an array of tiny, metallic, U-shaped structures onto a dielectric material, a team of researchers in China has created a new artificial surface that can bend and focus electromagnetic waves ...

User comments : 0

More news stories

CERN: World-record current in a superconductor

In the framework of the High-Luminosity LHC project, experts from the CERN Superconductors team recently obtained a world-record current of 20 kA at 24 K in an electrical transmission line consisting of two ...

Glasses strong as steel: A fast way to find the best

Scientists at Yale University have devised a dramatically faster way of identifying and characterizing complex alloys known as bulk metallic glasses (BMGs), a versatile type of pliable glass that's stronger than steel.

Tech giants look to skies to spread Internet

The shortest path to the Internet for some remote corners of the world may be through the skies. That is the message from US tech giants seeking to spread the online gospel to hard-to-reach regions.

Patent talk: Google sharpens contact lens vision

(Phys.org) —A report from Patent Bolt brings us one step closer to what Google may have in mind in developing smart contact lenses. According to the discussion Google is interested in the concept of contact ...

Wireless industry makes anti-theft commitment

A trade group for wireless providers said Tuesday that the biggest mobile device manufacturers and carriers will soon put anti-theft tools on the gadgets to try to deter rampant smartphone theft.