New finding in ribosome signaling may lead to improved antibiotics

February 23, 2011

(PhysOrg.com) -- Researchers at the University of Illinois at Chicago have discovered a signaling mechanism in the bacterial ribosome that detects proteins that activate genes for antibiotic resistance.

"The ribosome is one of the most complex molecular machines in the cell," said Alexander Mankin, UIC professor and director of the Center for Pharmaceutical Biotechnology. It is responsible for the production of all proteins in the cell, and in bacteria it is one of the major antibiotic targets.

Understanding how signals are generated and transmitted within the ribosome, Mankin said, may one day lead to better antibiotics.

Mankin's research, funded by the National Science Foundation, has been published in the journal Molecular Cell.

The ribosome is responsible for activating some in the presence of certain proteins. For that to occur, special sensors in the ribosome must recognize cellular cues and the structure of the regulatory protein. Once the signal is detected, it is then transmitted to the functional centers which alter the ribosome's performance.

Mankin's latest research has found at least one of the in the ribosome. He and his coworkers found that the presence of the regulatory protein as it is made within the ribosome changes the properties of the ribosome's catalytic center.

Under normal conditions, the ribosome's catalytic center can accept any of the 20 natural amino acids, which are then added to the growing protein chain.

However, if the ribosome has synthesized the in the presence of an antibiotic, the catalytic center rejects some or even all amino acids. As a result, synthesis of the regulatory stops, and the genes of antibiotic resistance are activated.

"This is one of the strategies used by pathogenic bacteria exposed to to regulate expression of antibiotic resistance genes," Mankin said.

In previous studies, Mankin and his research team pinpointed some of the ribosomal RNA residues that interact with the growing regulatory peptide, thus serving the function of the peptide sensors.

Explore further: Biologists probe the machinery of cellular protein factories

Related Stories

Biologists probe the machinery of cellular protein factories

September 13, 2006

Proteins of all sizes and shapes do most of the work in living cells, and the DNA sequences in genes spell out the instructions for making those proteins. The crucial job of reading the genetic instructions and synthesizing ...

Scientists discover how some bacteria survive antibiotics

April 30, 2008

Researchers at the University of Illinois at Chicago have discovered how some bacteria can survive antibiotic treatment by turning on resistance mechanisms when exposed to the drugs. The findings, published in the April 24 ...

Key piece of puzzle sheds light on function of ribosomes

January 13, 2010

(PhysOrg.com) -- When ribosomes produce protein in all living cells, they do so through a chemical reaction that happens so fast that scientists have been puzzled. Using large quantum mechanical calculations of the reaction ...

Antibiotics might team up to fight deadly staph infections

January 26, 2010

Researchers at the University of Illinois at Chicago and Israel's Weizman Institute of Science have found that two antibiotics working together might be more effective in fighting pathogenic bacteria than either drug on its ...

Recommended for you

How bees naturally vaccinate their babies

July 31, 2015

When it comes to vaccinating their babies, bees don't have a choice—they naturally immunize their offspring against specific diseases found in their environments. And now for the first time, scientists have discovered how ...

New insights into the production of antibiotics by bacteria

July 31, 2015

Bacteria use antibiotics as a weapon and even produce more antibiotics if there are competing strains nearby. This is a fundamental insight that can help find new antibiotics. Leiden scientists Daniel Rozen and Gilles van ...

Out of the lamplight

July 31, 2015

The human body is governed by complex biochemical circuits. Chemical inputs spur chain reactions that generate new outputs. Understanding how these circuits work—how their components interact to enable life—is critical ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.