New finding in ribosome signaling may lead to improved antibiotics

Feb 23, 2011

(PhysOrg.com) -- Researchers at the University of Illinois at Chicago have discovered a signaling mechanism in the bacterial ribosome that detects proteins that activate genes for antibiotic resistance.

"The ribosome is one of the most complex molecular machines in the cell," said Alexander Mankin, UIC professor and director of the Center for Pharmaceutical Biotechnology. It is responsible for the production of all proteins in the cell, and in bacteria it is one of the major antibiotic targets.

Understanding how signals are generated and transmitted within the ribosome, Mankin said, may one day lead to better antibiotics.

Mankin's research, funded by the National Science Foundation, has been published in the journal Molecular Cell.

The ribosome is responsible for activating some in the presence of certain proteins. For that to occur, special sensors in the ribosome must recognize cellular cues and the structure of the regulatory protein. Once the signal is detected, it is then transmitted to the functional centers which alter the ribosome's performance.

Mankin's latest research has found at least one of the in the ribosome. He and his coworkers found that the presence of the regulatory protein as it is made within the ribosome changes the properties of the ribosome's catalytic center.

Under normal conditions, the ribosome's catalytic center can accept any of the 20 natural amino acids, which are then added to the growing protein chain.

However, if the ribosome has synthesized the in the presence of an antibiotic, the catalytic center rejects some or even all amino acids. As a result, synthesis of the regulatory stops, and the genes of antibiotic resistance are activated.

"This is one of the strategies used by pathogenic bacteria exposed to to regulate expression of antibiotic resistance genes," Mankin said.

In previous studies, Mankin and his research team pinpointed some of the ribosomal RNA residues that interact with the growing regulatory peptide, thus serving the function of the peptide sensors.

Explore further: Micro fingers for arranging single cells

Related Stories

Scientists discover how some bacteria survive antibiotics

Apr 30, 2008

Researchers at the University of Illinois at Chicago have discovered how some bacteria can survive antibiotic treatment by turning on resistance mechanisms when exposed to the drugs. The findings, published in the April 24 ...

Antibiotics might team up to fight deadly staph infections

Jan 26, 2010

Researchers at the University of Illinois at Chicago and Israel's Weizman Institute of Science have found that two antibiotics working together might be more effective in fighting pathogenic bacteria than either drug on its ...

Biologists probe the machinery of cellular protein factories

Sep 13, 2006

Proteins of all sizes and shapes do most of the work in living cells, and the DNA sequences in genes spell out the instructions for making those proteins. The crucial job of reading the genetic instructions and synthesizing ...

Key piece of puzzle sheds light on function of ribosomes

Jan 13, 2010

(PhysOrg.com) -- When ribosomes produce protein in all living cells, they do so through a chemical reaction that happens so fast that scientists have been puzzled. Using large quantum mechanical calculations of the reaction ...

Recommended for you

Micro fingers for arranging single cells

Apr 24, 2015

Functional analysis of a cell, which is the fundamental unit of life, is important for gaining new insights into medical and pharmaceutical fields. For efficiently studying cell functions, it is essential ...

Detailed structure of human ribosome revealed

Apr 24, 2015

A team at the Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC - CNRS/Université de Strasbourg/Inserm) has evidenced, at the atomic scale, the three-dimensional structure of the complete ...

How to kill a protein

Apr 24, 2015

For decades scientists have been looking closely at how our cells make proteins. But the inverse is equally important: how cells kill them.

How RNA machinery navigates our genomic obstacle course

Apr 24, 2015

Once upon a time, scientists thought RNA polymerase—the molecule that kicks off protein synthesis by transcribing DNA into RNA—worked like a wind-up toy: Set it down at a start site in our DNA and it ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.