Physicists develop potent packing process

Feb 28, 2011

New York University physicists have developed a method for packing microscopic spheres that could lead to improvements in commercial products ranging from pharmaceutical lotions to ice cream. Their work, which relies on an innovative application of statistical mechanics, appears in the Proceedings of the National Academy of Sciences.

The study aimed to manipulate the properties of , which are a mixture of two or more immiscible liquids. The NYU researchers examined of oil in water, which form the basis of a range of consumer products, including butter, ice cream, and milk.

The research was conducted in the laboratory of Jasna Brujic, an assistant professor in NYU's Department of Physics and part of its Center for Research.

Previously, her laboratory determined how spheres pack. These earlier findings showed how this process depends on the relative sphere sizes. In the PNAS study, Brujić and her research team sought to create a method to manipulate further how particles pack.

To do so, the researchers relied on a physical property known as "depletion attraction," a force that causes big particles to stick together by the pressure from the surrounding small ones.

Previous research has employed this process of attraction to create particulate gels, but these studies have tended to rely on thermally activated particles—below one micron in size—that result in complex structures known as fractals that look similar on all length scales.

In the PNAS study, the researchers used larger particles, which are not sensitive to room temperature and therefore pack under gravity alone.

To bring about depletion attraction, they added tiny polymers to the larger particles suspended in water. In essence, they used the smaller polymers to force together the larger spheres. In order to regulate the nature of this packing—how tightly or loosely the larger particles fit together—the researchers developed a statistical model that determines the fluctuations in the local properties of the packing.

"What we discovered is that you can control the connectivity of the —how they stick together and their properties—by manipulating the extent of the attraction," explained Brujić.

As a result of the discovery, the researchers have developed a method for potentially creating a range of materials—from loose to dense—based on the packing of their component parts.

Explore further: Cool calculations for cold atoms: New theory of universal three-body encounters

Related Stories

NYU physicists make room for oddballs

Aug 03, 2009

(PhysOrg.com) -- Here's a question. How many gumballs of different sizes can fit in one of those containers at the mall so as to reward a well-spent quarter? It's hard to believe that most people never consider ...

Researchers create 'handshaking' particles

Mar 24, 2010

Physicists at New York University have created "handshaking" particles that link together based on their shape rather than randomly. Their work, reported in the latest issue of the journal Nature, marks the first time scient ...

DNA can act like Velcro for nanoparticles

Nov 18, 2010

DNA can do more than direct how bodies our made -- it can also direct the composition of many kinds of materials, according to a new study from the U.S. Department of Energy’s Argonne National Laboratory.

Recommended for you

New method for non-invasive prostate cancer screening

12 hours ago

Cancer screening is a critical approach for preventing cancer deaths because cases caught early are often more treatable. But while there are already existing ways to screen for different types of cancer, ...

How bubble studies benefit science and engineering

13 hours ago

The image above shows a perfect bubble imploding in weightlessness. This bubble, and many like it, are produced by the researchers from the École Polytechnique Fédérale de Lausanne in Switzerland. What ...

Famous Feynman lectures put online with free access

14 hours ago

(Phys.org) —Back in the early sixties, physicist Richard Feynman gave a series of lectures on physics to first year students at Caltech—those lectures were subsequently put into print and made into text ...

Single laser stops molecular tumbling motion instantly

18 hours ago

In the quantum world, making the simple atom behave is one thing, but making the more complex molecule behave is another story. Now Northwestern University scientists have figured out an elegant way to stop a molecule from ...

User comments : 0