Physicists develop potent packing process

Feb 28, 2011

New York University physicists have developed a method for packing microscopic spheres that could lead to improvements in commercial products ranging from pharmaceutical lotions to ice cream. Their work, which relies on an innovative application of statistical mechanics, appears in the Proceedings of the National Academy of Sciences.

The study aimed to manipulate the properties of , which are a mixture of two or more immiscible liquids. The NYU researchers examined of oil in water, which form the basis of a range of consumer products, including butter, ice cream, and milk.

The research was conducted in the laboratory of Jasna Brujic, an assistant professor in NYU's Department of Physics and part of its Center for Research.

Previously, her laboratory determined how spheres pack. These earlier findings showed how this process depends on the relative sphere sizes. In the PNAS study, Brujić and her research team sought to create a method to manipulate further how particles pack.

To do so, the researchers relied on a physical property known as "depletion attraction," a force that causes big particles to stick together by the pressure from the surrounding small ones.

Previous research has employed this process of attraction to create particulate gels, but these studies have tended to rely on thermally activated particles—below one micron in size—that result in complex structures known as fractals that look similar on all length scales.

In the PNAS study, the researchers used larger particles, which are not sensitive to room temperature and therefore pack under gravity alone.

To bring about depletion attraction, they added tiny polymers to the larger particles suspended in water. In essence, they used the smaller polymers to force together the larger spheres. In order to regulate the nature of this packing—how tightly or loosely the larger particles fit together—the researchers developed a statistical model that determines the fluctuations in the local properties of the packing.

"What we discovered is that you can control the connectivity of the —how they stick together and their properties—by manipulating the extent of the attraction," explained Brujić.

As a result of the discovery, the researchers have developed a method for potentially creating a range of materials—from loose to dense—based on the packing of their component parts.

Explore further: New filter could advance terahertz data transmission

Related Stories

NYU physicists make room for oddballs

Aug 03, 2009

(PhysOrg.com) -- Here's a question. How many gumballs of different sizes can fit in one of those containers at the mall so as to reward a well-spent quarter? It's hard to believe that most people never consider ...

Researchers create 'handshaking' particles

Mar 24, 2010

Physicists at New York University have created "handshaking" particles that link together based on their shape rather than randomly. Their work, reported in the latest issue of the journal Nature, marks the first time scient ...

DNA can act like Velcro for nanoparticles

Nov 18, 2010

DNA can do more than direct how bodies our made -- it can also direct the composition of many kinds of materials, according to a new study from the U.S. Department of Energy’s Argonne National Laboratory.

Recommended for you

New filter could advance terahertz data transmission

Feb 27, 2015

University of Utah engineers have discovered a new approach for designing filters capable of separating different frequencies in the terahertz spectrum, the next generation of communications bandwidth that ...

The super-resolution revolution

Feb 27, 2015

Cambridge scientists are part of a resolution revolution. Building powerful instruments that shatter the physical limits of optical microscopy, they are beginning to watch molecular processes as they happen, ...

Precision gas sensor could fit on a chip

Feb 27, 2015

Using their expertise in silicon optics, Cornell engineers have miniaturized a light source in the elusive mid-infrared (mid-IR) spectrum, effectively squeezing the capabilities of a large, tabletop laser onto a 1-millimeter ...

A new X-ray microscope for nanoscale imaging

Feb 27, 2015

Delivering the capability to image nanostructures and chemical reactions down to nanometer resolution requires a new class of x-ray microscope that can perform precision microscopy experiments using ultra-bright ...

New research signals big future for quantum radar

Feb 26, 2015

A prototype quantum radar that has the potential to detect objects which are invisible to conventional systems has been developed by an international research team led by a quantum information scientist at the University ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.