People at risk of diabetes offer clues toward novel drugs

Feb 14, 2011

Once people develop type 2 diabetes, high blood glucose levels alter their metabolism so much that it becomes difficult to sift through all the clues to find what might enable the disease. "To identify factors that play a primary role in disease susceptibility, we want to investigate people before they get to that point," says Mary-Elizabeth Patti, M.D. of Joslin Diabetes Center. By examining people across the spectrum of diabetes—from healthy to the full-blown disease—scientists in her lab have found a molecular pathway that offers novel targets for drugs.

People develop over time as their bodies become more and more resistant to the hormone insulin, which is necessary to process the glucose in blood that provides energy for cells, explains Dr. Patti, who is also an Assistant Professor at Harvard Medical School.

In research reported online in the Journal of Clinical Investigation on February 14, Joslin clinical researchers, led by Dr. Allison Goldfine, took tiny samples of muscles from three categories of people: some who were healthy, some with a family history of who showed signs of insulin resistance although their levels were normal, and some with full-blown type 2 diabetes.

They found that among the latter two groups, a gene known as STARS was expressed more than twice as much as in healthy people. STARS activates another gene known as SRF, and a group of genes regulated by SRF along with a co-activator protein called MKL1 showed the most increase in expression in the cells of those with type 2 diabetes. When scientists cultivated those cells in vitro, the same results appeared.

Examining the muscles of insulin-resistant mice, the scientists found similar boost in the expression of those key genes.

But was this molecular pathway helping to trigger insulin resistance or just showing up at the scene of the crime?

To find out, the scientists next took muscle cells derived from rodents, reduced the expression of STARS and found that glucose uptake climbed in the cells. They then examined the effect of a chemical that inhibits SRF and found that glucose uptake rates increased in both mice and human cells—and that the effects were greater in cells from patients who were insulin resistant or had type 2 diabetes. Finally, the investigators showed that giving the chemical inhibitor to mice with high glucose levels also boosted glucose uptake in muscles.

"This pathway holds promise as a target for novel diabetes therapies, and it also gives us tools to understand the pathways of progression to diabetes," concludes Dr. Patti.

Explore further: Growing a blood vessel in a week

Provided by Joslin Diabetes Center

not rated yet
add to favorites email to friend print save as pdf

Related Stories

Apelin hormone injections powerfully lower blood sugar

Nov 04, 2008

By injecting a hormone produced by fat and other tissues into mice, researchers report in the November Cell Metabolism that they significantly lowered blood sugar levels in normal and obese mice. The findings suggest that t ...

Regulating the sugar factory in diabetes

May 21, 2009

Scientists in Sydney and Boston believe they may have identified a gene that controls abnormal production of sugar in the liver, a very troublesome problem for people with diabetes.

Completely novel action of insulin unveiled

Nov 05, 2008

A PhD student at Sydney's Garvan Institute of Medical Research has uncovered an important piece in the puzzle of how insulin works, a problem that has plagued researchers for more than 50 years. This finding brings us one ...

Study pinpoints role of insulin on glucagon levels

Apr 07, 2009

April 7, 2009 - Researchers at the Joslin Diabetes Center have shown for the first time that insulin plays a key role in suppressing levels of glucagon, a hormone involved in carbohydrate metabolism and regulating blood glucose ...

Exercise pivotal in preventing and fighting type II diabetes

Feb 07, 2007

One in three American children born in 2000 will develop type II diabetes, according to the U.S. Centers for Disease Control and Prevention (CDC). A new study at the University of Missouri-Columbia says that acute exercise ...

Recommended for you

Growing a blood vessel in a week

Oct 24, 2014

The technology for creating new tissues from stem cells has taken a giant leap forward. Three tablespoons of blood are all that is needed to grow a brand new blood vessel in just seven days. This is shown ...

Testing time for stem cells

Oct 24, 2014

DefiniGEN is one of the first commercial opportunities to arise from Cambridge's expertise in stem cell research. Here, we look at some of the fundamental research that enables it to supply liver and pancreatic ...

Team finds key signaling pathway in cause of preeclampsia

Oct 23, 2014

A team of researchers led by a Wayne State University School of Medicine associate professor of obstetrics and gynecology has published findings that provide novel insight into the cause of preeclampsia, the leading cause ...

Rapid test to diagnose severe sepsis

Oct 23, 2014

A new test, developed by University of British Columbia researchers, could help physicians predict within an hour if a patient will develop severe sepsis so they can begin treatment immediately.

User comments : 0