Pathway transforms normal cells into aggressive tumors

Feb 22, 2011

A biological pathway that transforms normal cells into aggressive tumors has been discovered by researchers at Cleveland Clinic's Lerner Research Institute.

This research, led by Philip Howe, Ph.D., of the Cancer Biology Department of the Lerner Research Institute of Cleveland Clinic, was recently published in a recent issue of Molecular Cell.

This research helps define the cellular events that lead to metastasis. While the study used breast , the pathway offers characteristics that are applicable to cancers in general. It is hoped that this improved understanding of cancer development will lead to better diagnostic, preventative, and therapeutic procedures for the disease.

These studies build on those published by the same group last year in , which identified the components of a molecular complex that prevents the processing of genetic material necessary for – and a protein that reverses this to permit tumor-forming ability.

The current publication further defines this mechanism by showing evidence in a mouse model that tumor progression hinges on the role of a specific molecular factor called "hnRNP E1." Mice lacking hnRNP E1 developed metastatic tumors when challenged with normal, non-invasive breast cells: mice with hnRNP E1 did not.

The whose expression is regulated by this mechanism is necessary for what is known as the epithelial-mesenchymal transition (EMT). EMT describes how cells that are normally stationary become mobile. This process is essential for embryonic development. Once development is complete, the process is silenced – except when a tumor forms. That is when the "safety" (i.e. hnRNP E1) is removed from the EMT-blocking complex, and the ensuing cell mobility promotes tumor progression.

Since EMT is not necessary in the normal adult, identifying the status of hnRNP E1 may be useful as a diagnostic approach for cancer. Furthermore, a strategy that prevents removing it from the complex may make it possible to specifically target cancerous versus normal tissue.

Explore further: Two-armed control of ATR, a master regulator of the DNA damage checkpoint

Provided by Lerner Research Institute

4 /5 (1 vote)
add to favorites email to friend print save as pdf

Related Stories

Embryonic pathway delivers stem cell traits

May 15, 2008

Studies of how cancer cells spread have led to a surprising discovery about the creation of cells with adult stem cell characteristics, offering potentially major implications for regenerative medicine and ...

Key mechanism identified in metastatic breast cancer

May 04, 2010

Scientists at the University of Kentucky Markey Cancer Center have identified a key molecular mechanism in breast cancer that enables tumor cells to spread to adjacent or distant parts of the body in a process called metastasis. ...

Fibroblasts invade at a snail's pace

Feb 02, 2009

A transcription factor known to drive the formation of fibroblasts during development also promotes their ability to invade and remodel surrounding tissues, report Rowe et al. in the February 9, 2009 issue ...

Recommended for you

Japanese scientist resigns over stem cell scandal

Dec 19, 2014

A researcher embroiled in a fabrication scandal that has rocked Japan's scientific establishment said Friday she would resign after failing to reproduce results of what was once billed as a ground-breaking study on ...

'Hairclip' protein mechanism explained

Dec 18, 2014

Research led by the Teichmann group on the Wellcome Genome Campus has identified a fundamental mechanism for controlling protein function. Published in the journal Science, the discovery has wide-ranging implications for bi ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.