Hearing with your nose: How nasal stem cells could tackle childhood hearing problems

Feb 10, 2011

Stem Cell scientists in Australia have found that patients suffering from hearing problems which began during infancy and childhood could benefit from a transplant of stem cells from their nose. The research, published today in Stem Cells, reveals that mucosa-derived stem cells can help preserve hearing function during the early-onset of sensorineural hearing loss.

Sensorineural is caused by the loss of sensory cells or in the cochlea, the of the responsible for . The condition can have genetic causes, often arising during infancy and childhood, hindering and leading to speech and language problems.

"One of the challenges in tackling this condition is that the regenerative ability of the human cochlea is severely limited", said lead author Dr. Sharon Oleskevich from the Hearing Research Group at The University of New South Wales. "It has been proposed that the transplantation of cells from other parts of the body could treat, prevent or even reverse hearing loss. The transplanted cells have the potential to repair tissue by replacing damaged cells and enhancing the survival of existing cells, preventing the condition from developing further."

To investigate the effects of this treatment, nasal stem cells were injected into the cochlea of mice displaying symptoms of hearing loss. Mice were chosen for this treatment as they display a similar decline in hearing function following infancy.

"The authors have used an interesting type of adult stem cell, related to mesenchymal stem cells, to reduce the extent of hearing loss. Since the cells did not integrate into the cochlea, it is likely that the effects from the adult stem cells were due to the release of factors to preserve function of the endogenous stem cells. Mesenchymal stem cells are known to provide factors to keep many types of cells healthy and functioning," said Jan Nolta, Associate Editor of .

Patient hearing levels were examined using the auditory brainstem response assay, which determines the lowest sound level to which the brain responds, known as the hearing threshold.

The mice which received the transplanted cells were compared to mice who had not received the treatment a month later, revealing that the hearing threshold level in stem cell-transplanted mice was significantly lower.

"The results demonstrate a significant effect of nasal stem cell transplantations for sensorineural hearing loss," concluded Oleskevich. "These cells can be obtained easily from the nasal cavity making this transplantation a potential treatment for other human conditions including Parkinson's disease and cardiac infarction."

Explore further: New molecule fights oxidative stress, may lead to therapies for cancer and Alzheimer's

add to favorites email to friend print save as pdf

Related Stories

Can you hear me now? Stem cells enhance hearing recovery

Jun 25, 2007

Tokyo, Japan -- Researchers have shown that bone marrow stem cells injected into a damaged inner ear can speed hearing recovery after partial hearing loss. The related report by Kamiya et al, “Mesenchymal stem cell transplantation ...

New stem cell therapy may lead to treatment for deafness

Mar 23, 2009

Deafness affects more than 250 million people worldwide. It typically involves the loss of sensory receptors, called hair cells, for their "tufts" of hair-like protrusions, and their associated neurons. The transplantation ...

New study hopeful on neural stem cells

Aug 05, 2006

Neural stem cells derived from federally approved human embryonic cells are inferior to stem cells derived from donated fetal tissue, a new study found.

Probing Question: Can deafness be cured?

Mar 04, 2010

The New Orleans Saints won the Superbowl in February, and the crowd roared. Quarterback Drew Brees brought his one-year-old son to the field to experience the celebration-muffled through an enormous pair of ...

Recommended for you

Scientists aim to give botox a safer facelift

5 hours ago

New insights into botulinum neurotoxins and their interactions with cells are moving scientists ever closer to safer forms of Botox and a better understanding of the dangerous disease known as botulism. By comparing all known ...

User comments : 0