Newly discovered pheromone linked to aggressive behavior in squid

February 10, 2011

Scientists have identified a pheromone produced by female squid that triggers immediate and dramatic fighting in male squid that come into contact with it. The aggression-producing pheromone, believed to be the first of its kind discovered in any marine animal, belongs to a family of proteins found in vertebrates, including humans. Results of the study appear in the February 10th issue of Current Biology.

Male-male aggression is a complex process that involves neural, hormonal, physiological, and psychological stimuli and is widespread in the animal kingdom, where it is associated with the acquisition or retention of shelter and food, and in sexual competition. "The identification of this pheromone as a key component of this signaling system is highly unusual because the male squids need only to come into contact with these protein molecules to initiate the complex cascade of behaviors that we term aggressive fighting," says Roger Hanlon, senior scientist at the Marine Biological Laboratory (MBL) and study co-author.

are highly advanced marine invertebrates with a complex mating system rivaling that of vertebrates. Most mating and egg laying in the longfin squid (Loligo pealeii), the focus of this study, occurs in the spring when the animals migrate from deep offshore waters to shallower waters along the eastern seaboard, from North Carolina to Maine. Females mate multiple times with multiple males, who compete fiercely for females.

In field studies, the scientists observed a visual attraction by male squid to eggs laid on the followed by an escalation from calm swimming to the highest level of aggressive fighting—even in the absence of females—when they physically contacted eggs. Seeking to identify what was triggering the behavior, Hanlon and his colleagues, including Scott Cummins of The University of the Sunshine Coast, Australia; Bernard Degnan of Queensland University; Kendra Buresch of the MBL; Jean Boal and Johanna Holm of Millersville University; and Gregg Nagle of the Medical College of Georgia/University of Georgia Medical Partnership, conducted laboratory experiments at the MBL.

They discovered a protein pheromone produced in the female reproductive tract and embedded in the outer surface of eggs. After purifying the pheromone and presenting it to male squid in the lab, they found the same extreme aggressive responses, even when the protein was "painted" translucently on a glass vial that contained squid eggs. "The contact pheromone was incredibly resistant to degradation," says Nagle. "It appears to remain intact for an extended period of time until the eggs are seen and contacted by male squid."

"Our lab experiments show that the male squid that touches the eggs first becomes aggressive faster than other males who have not yet touched the eggs," says Hanlon. "This leads to dominance by the males that encounter the pheromone. Dominant males pair with the females and mate more often, and they gain greater fertilization success so the extremely competitive aggression has a payoff."

"It was exciting to map an important behavior back to the molecular level," adds Boal. "The research involved careful teamwork among people with very different backgrounds and skills. It was great to be part of such a far-flung and interesting group of scientists."

While there are multiple discoveries of pheromones that can elicit aggression in land-based animals, the scientists maintain that this discovery in squid will help them to understand the critical signaling beneath our oceans. "Squid may have revealed a more direct way of stimulating aggression," says Hanlon. "We doubt that many researchers have thought that contact with molecules in the external world could stimulate such complex and extreme aggressive behavior."

Interestingly, the protein found in squid has some similarity with beta-microseminoproteins (ß-MSP), a family of proteins found in humans and other animals. "The functions of ß-MSP in vertebrates have not been determined, but our findings in squids may inspire other researchers to consider similar functions in higher ," says Hanlon.

Explore further: Sonar monitors California squid fishery

Related Stories

Sonar monitors California squid fishery

February 7, 2006

California's $30-million-a-year squid industry has quadrupled during the past decade and now scientists are using sonar to assess squid stocks.

Study: Squid are masters of disguise

September 25, 2006

U.S. marine scientists say squid are masters of disguise, using their pigmented skin cells to camouflage themselves nearly instantaneously from predators.

Urine sprays during courtship send mixed messages

March 29, 2010

Walking through urine drives crayfish into an aggressive sexual frenzy. Researchers writing in the open access journal BMC Biology suggest that a urine-mediated combination of aggressive and reproductive behaviour ensures ...

What makes flies attack?

November 23, 2010

Pity the poor female fruit fly. Being a looker is simply not enough, it seems. If you're to get a date, much less a proposal, you must also smell and act like a girl. Otherwise, you might just have a fight on your hands. ...

Recommended for you

Genomes uncover life's early history

August 24, 2015

A University of Manchester scientist is part of a team which has carried out one of the biggest ever analyses of genomes on life of all forms.

Rare nautilus sighted for the first time in three decades

August 25, 2015

In early August, biologist Peter Ward returned from the South Pacific with news that he encountered an old friend, one he hadn't seen in over three decades. The University of Washington professor had seen what he considers ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.