Nanowire research at Stevens makes cover of Applied Physics Letters

Feb 23, 2011

An article by Stevens Institute of Technology researchers featured as the cover page of Applied Physics Letters Volume 98, Issue 7 represents a step forward in techniques for the arrangement of nanowires.

Professors Dr. Chang-Hwan Choi and Dr. Eui-Hyeok (EH) Yang, and graduate students Wei Xu, Rajesh Leeladhar, and Yao-Tsan Tsai, focused on nanowires, structures that are mere nanometers in diameter but have enormous potential in nanotechnology to create tiny circuits that would make possible nanoelectronics, nanophotonics, and nanobiotechnology. Such devices could forever change the way we harness energy, communicate, and treat disease.

"This highly promising research can lead to the development of reliable nano-actuators which in turn stand to benefit fields and applications as diverse as biomaterials, nano robots, , and high frequency nano antenna applications and is an affirmation of the cutting edge research that is taking place in the Micro/Nano Devices Laboratory," says Dr. Constantin Chassapis, Deputy Dean of the Charles V. Schaefer, Jr. School of Engineering and Science and Department Director of Mechanical Engineering.

The precise arrangement of nanowires on a large scale is crucial for any practical application. However, many current techniques for the controllable arrangement of nanowires suffer limitations.

The article, entitled, "Evaporative self-assembly of nanowires on superhydrophobic surfaces of nanotip latching surfaces," reports a technique that is highly effective in assembling nanowires. A colloid droplet of nanowires (i.e., nanowires dispersed in a water droplet) is placed on a nano-engineered superhydrophobic surface. As the droplet evaporates, two forces cause the nanowires to self-assemble on the specially-designed surface: hydrodynamic forces inside the droplet and capillary forces of the receding contact line of the droplet. Simple and convenient, the new self-assembly technique offers a high yield rate, improving the controlled arrangement of which may be used in nanodevices.

Explore further: Team finds electricity can be generated by dragging saltwater over graphene

Provided by Stevens Institute of Technology

5 /5 (3 votes)
add to favorites email to friend print save as pdf

Related Stories

Danish nanowires have great potential

Nov 02, 2009

Danish nanophysicists have developed a new method for manufacturing the cornerstone of nanotechnology research - nanowires. The discovery has great potential for the development of nanoelectronics and highly ...

Low-Temperature Growth and Properties of ZnO Nanowires

Jun 01, 2004

Xuan Wang et al. from Peking University, China report in the last issue of Applied Physics Letters about ZnO nanowires grown through evaporation of zinc powders under a low temperature of 400 C. Being about 10 ...

Recommended for you

First direct observations of excitons in motion achieved

Apr 16, 2014

A quasiparticle called an exciton—responsible for the transfer of energy within devices such as solar cells, LEDs, and semiconductor circuits—has been understood theoretically for decades. But exciton ...

User comments : 0

More news stories

Thinnest feasible nano-membrane produced

A new nano-membrane made out of the 'super material' graphene is extremely light and breathable. Not only can this open the door to a new generation of functional waterproof clothing, but also to ultra-rapid filtration. The ...

Wiring up carbon-based electronics

Carbon-based nanostructures such as nanotubes, graphene sheets, and nanoribbons are unique building blocks showing versatile nanomechanical and nanoelectronic properties. These materials which are ordered ...

Leeches help save woman's ear after pit bull mauling

(HealthDay)—A pit bull attack in July 2013 left a 19-year-old woman with her left ear ripped from her head, leaving an open wound. After preserving the ear, the surgical team started with a reconnection ...

Venture investments jump to $9.5B in 1Q

Funding for U.S. startup companies soared 57 percent in the first quarter to a level not seen since 2001, as venture capitalists piled more money into an increasing number of deals, according to a report due out Friday.