Researchers discover new way to design metal nanoparticle catalysts

Feb 22, 2011

Tiny metal nanoparticles are used as catalysts in many reactions, from refining chemicals to producing polymers and biofuels. How well these nanoparticles perform as catalysts for these reactions depend on which of their crystal faces are exposed.

But previous attempts to design these by changing their shape have failed because the structures are unstable and will revert back to their equilibrium shape.

Now, researchers at Northwestern University's Institute for Catalysis in Energy Processing have discovered a new strategy for fabricating in catalysts that promises to enhance the selectivity and yield for a wide range of structure-sensitive catalytic reactions. The team, led by Laurence D. Marks, professor of materials science and engineering at the McCormick School of Engineering and Applied Science, discovered that they could design nanoparticles by designing the particle's support structure.

"Instead of trying to engineer the nanoparticles, we've engineered the substrate that the nanoparticle sits on," Marks said. "That changes what faces are exposed." Their results were published in February in the journal .

This solution was a bit of a discovery: the team created the nanoparticle samples, discovered that they didn't change their shape (as the laws of thermodynamics caused previously designed nanoparticles to do), then set out figuring how it worked. It turns out that epitaxy — the relationship between the position of the atoms in the nanoparticle and the position of the atoms on the substrate — was more important to design than previously thought.

The team is currently testing the nanoparticles in a catalytic reactor, and early results look promising, Marks says. The nanoparticles appear to be stable enough to survive the rigors of long-term use as catalysts.

"It opens the door to designing better catalysts," Marks said. "This method could be used with a variety of different metal nanoparticles. It's a new strategy, and it could have a very big impact."

Explore further: Microfluidics and nanofluidics research provide inexpensive ways to analyze blood and filter water (w/ Video)

More information: The Nano Letters paper is titled "Oriented Catalytic Platinum Nanoparticles on High Surface Area Strontium Titanate Nanocuboids."

Related Stories

Gold nanoparticles enrich every day products

May 05, 2010

(PhysOrg.com) -- Durable paint, water purification, faster computers, tougher shoe soles, and lighter and cheaper televisions are all possibilities now that a Queensland University of Technology (QUT) scientist has discovered ...

'There's Gold In Them That Exhausts!'

Aug 30, 2007

A University of Leicester research team is working on a new technique for growing nanoparticles which could have extraordinary implications in electronics, medicine, the measurement of atmospheric air and the cleansing of ...

Gold and silver nano baubles

Dec 03, 2010

They might just be the smallest Christmas tree decorations ever. Tiny spherical particles of gold and silver that are more than 100 million times smaller than the gold and silver baubles used to decorate seasonal fir trees ...

Recommended for you

User comments : 0