Researcher investigates new material grown from sugar

Feb 14, 2011 by Molly Lachance

(PhysOrg.com) -- Ordinary table sugar could be a key ingredient to developing much lighter, faster, cheaper, denser and more robust computer electronics for use on U.S. military aircraft.

Though admittedly far in the future, recent results from a program led by chemist and Rice University professor, Dr. James Tour demonstrate another example of the cutting-edge basic research.

Tour and his colleagues at Rice have developed a relatively easy and controllable method for making pristine sheets of --- the one-atom-thick form of carbon --- from regular table and other solid carbon sources.

"Dr. Tour is exploring a chemical approach to producing high quality carbon based nanostructures such as nanotubes and graphenes with well defined properties," said AFOSR program manager, Dr. Charles Lee.

In their method, a small amount of sugar is placed on a tiny sheet of copper foil. The sugar is then subjected to flowing hydrogen and argon gas under heat and low pressure. After 10 minutes, the sugar is reduced to a pure carbon film, or a single layer of graphene. Adjusting the allowed the researchers to control the thickness of the film.

The use of solid carbon sources like sugar has allowed Tour to stay away from the more cumbersome method and the high temperatures associated with it. His one-step, low-temperature process makes graphene considerably easier to manufacture.

"In a traditional CVD point of view, it was straightforward to optimize the pristine graphene's quality through adjusting the growth conditions and the with continuous gas sources (CH4 or C2H2)," explained Tour. "With this technique using different kinds of solid sources, more benefits such as graphene doping and thickness control could be realized."

According to Tour, doped graphene opens more possibilities for both Air Force and commercial electronics applications. Pristine graphene has no bandgap, but doped graphene allows for manipulation of electronic and optical properties, important factors for making switching and logic devices.

"These materials can be used in advanced electronics, photonics as well as structural applications for the Air Force," explained Lee.

While the Air Force is focusing primarily on potential electronics applications, many other commercial and medical uses could be possible, including transparent touch screen devices, special biocompatible films for surgery of traumatic brain injuries, faster transistors in personal computers or thin materials for solar energy harvesting.

Explore further: Thinnest feasible nano-membrane produced

Provided by Air Force Office of Scientific Research

5 /5 (1 vote)
add to favorites email to friend print save as pdf

Related Stories

Producing graphene layers using crystallization

Mar 02, 2010

(PhysOrg.com) -- Ever since it's relatively recent discovery, graphene has generated a great deal of interest. Graphene is extracted from graphite in many cases, and consists of a sheet of carbon atoms bound together in a ...

Unzipping Carbon Nanotubes Can Make Graphene Ribbons

Apr 20, 2009

(PhysOrg.com) -- By "unzipping" carbon nanotubes, researchers have shown how to make flat graphene ribbons. Graphene, which is a one-atom-thick sheet of carbon that looks like chicken wire, has unique electrical ...

Doping graphene

Jun 01, 2010

An organic molecule that has been found to be effective in making silicon-based electronics may be viable for building electronics on sheets of carbon only a single molecule thick. Researchers at the Max Planck ...

Recommended for you

Thinnest feasible nano-membrane produced

Apr 17, 2014

A new nano-membrane made out of the 'super material' graphene is extremely light and breathable. Not only can this open the door to a new generation of functional waterproof clothing, but also to ultra-rapid filtration. The ...

Wiring up carbon-based electronics

Apr 17, 2014

Carbon-based nanostructures such as nanotubes, graphene sheets, and nanoribbons are unique building blocks showing versatile nanomechanical and nanoelectronic properties. These materials which are ordered ...

Making 'bucky-balls' in spin-out's sights

Apr 16, 2014

(Phys.org) —A new Oxford spin-out firm is targeting the difficult challenge of manufacturing fullerenes, known as 'bucky-balls' because of their spherical shape, a type of carbon nanomaterial which, like ...

User comments : 0

More news stories

'Exotic' material is like a switch when super thin

(Phys.org) —Ever-shrinking electronic devices could get down to atomic dimensions with the help of transition metal oxides, a class of materials that seems to have it all: superconductivity, magnetoresistance ...

Innovative strategy to facilitate organ repair

A significant breakthrough could revolutionize surgical practice and regenerative medicine. A team led by Ludwik Leibler from the Laboratoire Matière Molle et Chimie (CNRS/ESPCI Paris Tech) and Didier Letourneur ...