Key factor combines day and night to hold back morning

Feb 18, 2011
A minimal circuit model for the mammalian circadian transcriptional network. Morning (E/E'box), day (D-box) and night (RRE) DNA elements lie at the heart of the circadian clock. Solid lines indicate activating (green) and inhibitory (pink) interactions between clock gene types. The dotted lines indicate how Cry1 represses morning expression through the combined action of day and night sequences.

As in manmade timepieces, the movements of the genetic clockworks that lie behind circadian cycles involve a remarkable amount of complexity. Researcher's from RIKEN's Laboratory for Systems Biology report how delayed feedback repression is a key factor in mammalian clock function.

The mammalian is thought to arise from the interactions of around 20 with specific associated with morning, day, and night expression. Existing models of this genetic network can readily explain the basis for the day and night activities, but the mechanism underlying morning expression remains incompletely understood. It is thought that delayed negative feedback exerted by the morning (E/E? box) inhibitor Cryptochrome 1 (Cry1), which is itself expressed in evening, plays an important role in keeping the on time. But just how it achieves this effect is unknown.

Maki Ukai-Tadenuma and Rikuhiro G. Yamada of the Laboratory for (Hiroki R. Ueda, Project Leader), along with colleagues in the Universities of Memphis (USA) and Fribourg (Switzerland), now report how delayed feedback repression is a key factor in mammalian clock function. Published in Cell, this work shows the role of Cry1 as mediator of delayed negative feedback repression and fleshes out the current understanding of the circadian circuitry.

The team began by looking into the basis for the evening expression of Cry1 using reporter genes coding for the luciferase protein to detect transcriptional activity, and found that the Cry1 promoter region induces the expression of genes carrying the daytime expression motif. A closer look at Cry1’s DNA revealed that its intronic region contains a separate sequence that induces nighttime clock genes. They next stitched together a construct including these promoter and intron regions, and ran another reporter assay to observe its behavior, and found that its expression switched on in circadian evening, suggesting that this in-between expression time is a result of the combination of day and night regulatory elements. To test this model, the team tried to rescue clock function in cells with homozygous deletions of both Cry1 and Cry2 by inducing the evening expression of exogenous Cry1. They found that while the Cry1 promoter region alone was ineffective, when the promoter and intron regions were used in conjunction, the gene’s circadian rhythmicity was restored.

Using this same set-up, Ukai-Tadenuma and Yamada next tried changing the onset time of Cry1 expression, and found that as expression neared midday, meaning that the normal phase delay was reduced, the amplitude of circadian oscillations grew smaller, in line with predictions. Similarly, prolonging the delay of exogenous Cry1 expression caused an increase in the length of the restored cycle.

The team's findings were recapitulated by a relatively simple phase vector model, which not only successfully reproduces the findings from the current study, but numerous other aspects of the circadian clock network as well.

"In 1990, Paul Hardin at Texas A&M pointed out the importance of delayed feedback repression in biological clocks, but it has taken 21 years to work out the mechanism behind it," says Ueda. "We will continue exploring whether the current minimal transcriptional network model is complete, or whether new regulatory systems remain to be discovered."

Explore further: Environmental pollutants make worms susceptible to cold

More information: Research paper 'Delay in feedback repression by cryptochrome 1 is required for circadian clock function' - www.ncbi.nlm.nih.gov/entrez/qu… n&list_uids=21236481

add to favorites email to friend print save as pdf

Related Stories

The food-energy cellular connection revealed

Oct 15, 2009

Our body's activity levels fall and rise to the beat of our internal drums—the 24-hour cycles that govern fundamental physiological functions, from sleeping and feeding patterns to the energy available to our cells. Whereas ...

Recommended for you

Environmental pollutants make worms susceptible to cold

Sep 19, 2014

Some pollutants are more harmful in a cold climate than in a hot, because they affect the temperature sensitivity of certain organisms. Now researchers from Danish universities have demonstrated how this ...

A new quality control pathway in the cell

Sep 18, 2014

Proteins are important building blocks in our cells and each cell contains millions of different protein molecules. They are involved in everything from structural to regulatory aspects in the cell. Proteins are constructed ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

hush1
not rated yet Feb 28, 2011
a relatively simple phase vector model, which not only successfully reproduces the findings from the current study, but numerous other aspects of the circadian clock network as well.


A relatively simple phase vector model, which not only successfully reproduces the findings from the current study, but ALL other aspects of the circadian clock network is suspect - the physical and the abstract as one.

Is the abstract predictive as well? Not merely descriptive?