Jupiter's proposed mission system achieves milestone

February 7, 2011 By Jia-Rui C. Cook
This artist’s concept shows NASA's Jupiter Europa Orbiter which will carry a complement of 11 instruments to explore Europa and the Jupiter System. The spacecraft is part of the joint NASA-ESA Europa Jupiter System Mission (EJSM). Credit: NASA/ESA

(PhysOrg.com) -- With input from scientists around the world, American and European scientists working on the potential next new mission to the Jupiter system have articulated their joint vision for the Europa Jupiter System Mission. The mission is a proposed partnership between NASA and the European Space Agency. The scientists on the joint NASA-ESA definition team agreed that the overarching science theme for the Europa Jupiter System Mission will be "the emergence of habitable worlds around gas giants."

The proposed Europa Jupiter System Mission would provide orbiters around two of Jupiter's moons: a orbiter around Europa called the Jupiter Europa Orbiter, and an ESA orbiter around Ganymede called the Jupiter Ganymede Orbiter.

"We've reached hands across the Atlantic to define a mission to Jupiter's water worlds," said Bob Pappalardo, the pre-project scientist for the proposed Jupiter Europa Orbiter, who is based at NASA's Jet Propulsion Laboratory in Pasadena, Calif. "The Europa Jupiter System Mission will create a leap in scientific knowledge about the moons of Jupiter and their potential to harbor life."

The new reports integrate goals that were being separately developed by NASA and ESA working groups into one unified strategy.

The ESA report is being presented to the European public and science community this week, and the NASA report was published online in December. The NASA report is available at www.lpi.usra.edu/opag .

The proposed mission singles out the icy moons Europa and Ganymede as special worlds that can lead to a broader understanding of the Jovian system and of the possibility of life in our solar system and beyond. They are natural laboratories for analyzing the nature, evolution and potential habitability of icy worlds, because they are believed to present two different kinds of sub-surface oceans.

The Jupiter Europa Orbiter would characterize the relatively thin ice shell above Europa's ocean, the extent of that ocean, the materials composing its internal layers, and the way surface features such as ridges and "freckles" formed. It will also identify candidate sites for potential future landers. Instruments that might be on board could include a laser altimeter, an ice-penetrating radar, spectrometers that can obtain data in visible, infrared and ultraviolet radiation, and cameras with narrow- and wide-angle capabilities. The actual instruments to fly would be selected through a NASA competitive call for proposals.

Ganymede is thought to have a thicker ice shell, with its interior ocean sandwiched between ice above and below. ESA's Jupiter Ganymede Orbiter would investigate this different kind of internal structure. The Jupiter Ganymede Orbiter would also study the intrinsic magnetic field that makes Ganymede unique among all the solar system's known moons. This orbiter, whose instruments would also be chosen through a competitive process, could include a laser altimeter, spectrometers and cameras, plus additional fields-and-particles instruments

The two orbiters would also study other large Jovian moons, Io and Callisto, with an eye towards exploring the Jupiter system as an archetype for other gas giant planets.

NASA and ESA officials gave the Europa System Mission proposal priority status for continued study in 2009, agreeing that it was the most technically feasible of the outer solar system flagship missions under consideration.

Over the next few months, NASA officials will be analyzing the joint strategy and awaiting the outcome of the next Planetary Science Decadal Survey by the National Research Council of the U.S. National Academies. That survey will serve as a roadmap for new NASA planetary missions for the decade beginning 2013.

Explore further: Scientists Discover Ganymede has a Lumpy Interior

Related Stories

Scientists Discover Ganymede has a Lumpy Interior

August 18, 2004

Scientists have discovered irregular lumps beneath the icy surface of Jupiter's largest moon, Ganymede. These irregular masses may be rock formations, supported by Ganymede's icy shell for billions of years. This discovery ...

NASA Selects Contractor for First Prometheus Mission to Jupiter

September 21, 2004

NASA's Jet Propulsion Laboratory (JPL), Pasadena, Calif., selected Northrop Grumman Space Technology, Redondo Beach, Calif., as the contractor for co-designing the proposed Prometheus Jupiter Icy Moons Orbiter (JIMO) spacecraft. ...

NASA and ESA prioritize outer planet missions

February 18, 2009

At a meeting in Washington last week, NASA and ESA officials decided to first pursue a mission to study Jupiter and its four largest moons, and plan for another mission to visit Saturn's largest moon, Titan, and Enceladus.

Dual Drill Designed for Jupiter’s Europa Ice

April 15, 2010

NASA and the European Space Agency are sending a mission to study Jupiter and its moon Europa in 2020. There may be life in the moon’s ocean, but to find out a mission will have to be able to drill down through the overlying ...

Recommended for you

Seven new embedded clusters detected in the Galactic halo

July 25, 2016

(Phys.org)—A team of Brazilian astronomers, led by Denilso Camargo of the Federal University of Rio Grande do Sul in Porto Alegre, has discovered seven new embedded clusters located unusually far away from the Milky Way's ...

NASA to map the surface of an asteroid

July 25, 2016

NASA's OSIRIS-REx spacecraft will launch September 2016 and travel to a near-Earth asteroid known as Bennu to harvest a sample of surface material and return it to Earth for study. The science team will be looking for something ...

Digging deeper into Mars

July 25, 2016

Water is the key to life on Earth. Scientists continue to unravel the mystery of life on Mars by investigating evidence of water in the planet's soil. Previous observations of soil observed along crater slopes on Mars showed ...

A star's birth holds early clues to life potential

July 25, 2016

Our solar system began as a cloud of gas and dust. Over time, gravity slowly pulled these bits together into the Sun and planets we recognize today. While not every system is friendly to life, astronomers want to piece together ...

Orphaned protostars

July 25, 2016

Stars form as gravity contracts the gas and dust in an interstellar cloud until clumps develop that are dense enough to coalesce into stars. Precisely how this happens, however, is very uncertain, and the processes are hard ...

2 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

71STARS
1 / 5 (1) Feb 07, 2011
While I consider Jupiter as a "mini-Sun" (half Sun, half Planet) which had the capacity to produce "planets" of its own, the fact remains that these planets (which we call the Moons of Jupiter) are residing at a distance from the Sun that permits their icy terrain. Much success is wished for all the information they receive.
technicalengeneering
not rated yet Feb 09, 2011
truely a Space Odyssey

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.