Hydrogels used to make precise new sensor

Feb 08, 2011
This diagram depicts a new type of "diffraction-based" sensor made of thin stripes of a gelatinous material called a hydrogel, which expands and contracts depending on the acidity of its environment. The new type of biological and chemical sensor has few moving parts and works by precisely determining pH, revealing the identity of substances in liquid environments such as water or blood. The microscopic images Credit: Birck Nanotechnology Center, Purdue University

Researchers are developing a new type of biological and chemical sensor that has few moving parts, is low-cost and yet highly sensitive, sturdy and long-lasting.

The "diffraction-based" are made of thin stripes of a gelatinous material called a , which expands and contracts depending on the acidity of its environment.

Recent research findings have demonstrated that the sensor can be used to precisely determine pH - a measure of how acidic or basic a liquid is - revealing information about substances in liquid environments, said Cagri Savran (pronounced Chary Savran), an associate professor of mechanical engineering at Purdue University.

The sensor's simple design could make it more practical than other sensors in development, he said.

"Many sensors being developed today are brilliantly designed but are too expensive to produce, require highly skilled operators and are not robust enough to be practical," said Savran, whose work is based at Purdue's Birck Nanotechnology Center in the university's Discovery Park.

New findings show the technology is highly sensitive and might be used in chemical and biological applications including in waterways and in blood.

"As with any novel platform, more development is needed, but the detection principle behind this technology is so simple that it wouldn't be difficult to commercialize," said Savran, who is collaborating with another team of researchers led by Babak Ziaie, a Purdue professor of electrical and computer engineering and biomedical engineering.

Findings are detailed in a paper presented during the IEEE Sensors 2010 Conference in November and also published in the conference proceedings. The paper was written by postdoctoral researcher Chun-Li Chang, doctoral student Zhenwen Ding, Ziaie and Savran.

The flexible, water-insoluble hydrogel is formed into a series of raised stripes called a "diffraction grating," which is coated with gold on both the stripe surfaces and the spaces in between. The stripes expand and contract depending on the pH level of the environment.

Researchers in Ziaie's lab fabricated the hydrogel, while Savran's group led work in the design, development and testing of the diffraction-based sensor.

The sensors work by analyzing laser light reflecting off the gold coatings. Reflections from the stripes and spaces in between interfere with each other, creating a "diffraction pattern" that differs depending on the height of the stripes.

These diffraction patterns indicate minute changes in the movement of the hydrogel stripes in response to the environment, in effect measuring changes in pH.

"By precise measurement of pH, the diffraction patterns can reveal a lot of information about the sample environment," said Savran, who by courtesy is an associate professor of biomedical engineering and electrical and computer engineering. "This technology detects very small changes in the swelling of the diffraction grating, which makes them very sensitive."

The pH of a liquid is recorded on a scale from 0 to 14, with 0 being the most acidic and 14 the most basic. Findings showed the device's high sensitivity enables it to resolve changes smaller than one-1,000th on the pH scale, measuring swelling of only a few nanometers. A nanometer is about 50,000 times smaller than the finest sand grain.

"We know we can make them even more sensitive," Savran said. "By using different hydrogels, gratings responsive to stimuli other than pH can also be fabricated."

The work is ongoing.

"It's a good example of collaborations that can blossom when labs focusing on different research are located next to each other," Savran said. "Professor Ziaie's lab was already working with hydrogels, and my group was working on diffraction-based sensors. Hearing about the hydrogels work next door, one of my postdoctoral researchers, Chun-Li Chang thought of making a reflective diffraction grating out of hydrogels."

Explore further: An eel-lectrifying future for autonomous underwater robots

Related Stories

A faster, simpler test for disease biomarkers

Dec 17, 2007

In an advance toward earlier diagnosis of cancer and other disorders, scientists are reporting development of a potentially fast, simple and inexpensive blood test to detect disease “biomarkers.” The study is scheduled ...

Hydrogels provide scaffolding for growth of bone cells

Aug 17, 2008

Hyaluronic hydrogels developed by Carnegie Mellon University researchers may provide a suitable scaffolding to enable bone regeneration. The hydrogels, created by Newell Washburn, Krzysztof Matyjaszewski and Jeffrey Hollinger, ...

Nano-tetherball biosensor precisely detects glucose

Jan 22, 2009

(PhysOrg.com) -- Researchers have created a precise biosensor for detecting blood glucose and potentially many other biological molecules by using hollow structures called single-wall carbon nanotubes anchored ...

Recommended for you

How polymer banknotes were invented

4 hours ago

The Reserve Bank of Australia (RBA) and CSIRO's 20-year "bank project" resulted in the introduction of the polymer banknote – the first ever of its kind, and the most secure form of currency in the world. ...

Enabling the hearing impaired to locate human speakers

5 hours ago

New wireless microphones systems developed at EPFL should allow the hearing impaired to aurally identify, even with closed eyes, the location of the person speaking. This new technology will be used in classrooms ...

Researcher explores drone-driven crop management

Nov 25, 2014

A flock of pigeons flies over the soybean field where J. Craig Williams is standing. He reaches down and rips off a brown pod from one of the withered plants and splits it open. Grabbing a tiny bean between ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

maxlord
not rated yet Feb 09, 2011
The device might be very useful to indicate the change of pH, instead the pH itself. Hydrogels are not stable materials and their degree of swelling can change noticablely within just one day or two at the same pH. There are many publications dealing with this aging effect of hydrogels.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.