Detecting whether a heart attack has occurred

Feb 14, 2011 by Anne Trafton
After a heart attack, unmistakable signs of the event remain in the bloodstream for days.

During about 30 percent of all heart attacks, the patient experiences no symptoms. However, unmistakable signs of the attack remain in the bloodstream for days. MIT researchers, working with Massachusetts General Hospital’s Cardiovascular Research Center, have now designed a tiny implant that can detect those signs, which could help doctors more rapidly determine whether a patient has had a heart attack.

In a study of mice, the team showed that the new implants can detect three proteins whose levels spike after a heart attack. Such devices could be used to monitor patients who are at high risk of heart attack, allowing doctors to respond more quickly if an attack occurs, preventing more severe heart disease from developing.

Most surprisingly, the researchers discovered that the sensors not only detect the proteins, they also reveal how much protein has ever been present. This is useful because it allows biomarkers (biological molecules that indicate a disease state) to be detected even if they are no longer in the , says Michael Cima, professor of materials science and engineering and senior author of a paper on the work appearing in the Feb. 13 issue of Nature Biotechnology.

The new paper builds on earlier work. In 2009, Cima and others reported on a sensor able to detect human chorionic gonadotropin, a hormone overproduced in some cancer cells. The new study demonstrates that the sensor technology can work with a range of other molecules at concentrations found in the body. 

Cima and his colleagues decided to modify their sensor to work with a disease that has very well defined biomarkers. They teamed up with MGH cardiologist Dr. Paul Huang, professor at Harvard Medical School, to look at heart disease because it has already been established that three proteins — myoglobin, cardiac troponin I and creatine kinase — peak in a characteristic pattern after a heart attack.

“If you go to the ER thinking you’ve had a heart attack, they take a blood sample and analyze it for these specific proteins,” says Cima. “If you think about cancer, there aren’t generally agreed-upon markers.”

The three co-first authors on the Nature Biotechnology paper are all graduate students: Yibo Ling (Cima lab), Terrence Pong (Huang lab) and Chris Vassiliou (Cima lab).  

A scanned version of the implantable device. Courtesy of the Cima Lab

Specific detection

The small disk-shaped implant, which is 2 millimeters thick and 8 millimeters wide, contains iron-oxide particles coated with antibodies that target a specific biomarker. A semi-permeable membrane allows the protein targets to enter the device, where they bind to the antibodies. In this study, the researchers implanted six sensors — two for each heart-attack biomarker — under the skin of each mouse, and read them using magnetic resonance imaging (MRI).

One important finding is that all three sensors’ output was shown to be proportional to the size of the damage to the heart, says Huang. Thus, not only can they potentially be used to detect a , but they could yield some quick information on its severity.

This study marks the first time anyone has used implantable sensors to detect three different biomarkers, says Lee Josephson, associate professor at MGH’s Center for Molecular Imaging Research. “This shows how generalizable this technique is,” says Josephson, who was not involved in this study. Potential applications include not only detecting heart disease and cancer, but also tracking glucose levels in diabetic patients, he says.

Cima is now developing an implant that measures pH (acidity level), which could be useful for detecting or cancer. (Tumors are more acidic than healthy tissue, and dramatic increase in acidity is a near-instantaneous indicator of attack.)

In the future, he hopes to modify these sensors to detect low levels of hard-to-detect bacteria or viruses, or migrating tumor cells. “This may be a way to look for extremely small, or extremely transient concentrations of biological markers,” he says.

The current version of the implant is usable for about two months, but Cima believes the devices could be made to last longer by using antibodies that don’t break down as quickly.


This story is republished courtesy of MIT News (web.mit.edu/newsoffice/), a popular site that covers news about MIT research, innovation and teaching.

Explore further: Team advances genome editing technique

Related Stories

Implant monitors tumors

May 13, 2009

Surgical removal of a tissue sample is now the standard for diagnosing cancer. Such procedures, known as biopsies, are accurate but only offer a snapshot of the tumor at a single moment in time.

Implantable Device Offers Continuous Cancer Monitoring

Jul 21, 2009

(PhysOrg.com) -- Surgical removal of a tissue sample is now the standard for diagnosing cancer. Such procedures, known as biopsies, are accurate but offer only a snapshot of the tumor at a single moment in time.

Nano-implant measures tumor growth, treatment

Dec 05, 2006

A tiny implant now being developed at MIT could one day help doctors rapidly monitor the growth of tumors and the progress of chemotherapy in cancer patients. The implant contains nanoparticles that can be ...

A new approach to bladder-disease treatment

Dec 27, 2010

A bladder disease called interstitial cystitis affects at least a half-million people in the United States, mostly women, with perhaps an equal number undiagnosed. At present, there are no good options for ...

Recommended for you

Team advances genome editing technique

Oct 21, 2014

Customized genome editing – the ability to edit desired DNA sequences to add, delete, activate or suppress specific genes – has major potential for application in medicine, biotechnology, food and agriculture.

Studies steadily advance cellulosic ethanol prospects

Oct 20, 2014

At the Agricultural Research Service's Bioenergy Research Unit in Peoria, Illinois, field work and bench investigations keep ARS scientists on the scientific front lines of converting biomass into cellulosic ...

User comments : 0