Gut bacteria can control organ functions

Feb 28, 2011

Bacteria in the human gut may not just be helping digest food but also could be exerting some level of control over the metabolic functions of other organs, like the liver, according to research published this week in the online journal mBio. These findings offer new understanding of the symbiotic relationship between humans and their gut microbes and how changes to the microbiota can impact overall health.

"The gut microbiota enhances the host's metabolic capacity for processing nutrients and drugs and modulates the activities of multiple pathways in a variety of organ systems," says Sandrine Claus of the Imperial College of London, a researcher on the study.

Claus and her colleagues exposed germ-free mice to bedding that had previously been used by conventional mice with normal microbiota and followed their metabolic profiles for 20 days to observe changes as they became colonized with .

Over the first 5 days after exposure, the mice exhibited a rapid increase in weight (4%). Colonization also triggered a number of processes in the liver in which sugars (glucose) are converted to starch () and fat (triglycerides) for short-term and long-term energy storage. Statistical modeling between liver and microbial populations determined that the levels of glucose, glycogen and triglycerides in the liver were strongly associated with a single family of bacteria called Coriobacteriaceae.

"Here we describe the first evidence of an in vivo association between a family of bacteria and hepatic . These results provide new insights into the fundamental mechanisms that regulate host-gut microbiota interactions and are of wide interest to microbiological, nutrition, metabolic, systems biology and pharmaceutical research communities," says Claus.

Another important finding in the paper, according to Claus, is that gut colonization strongly stimulated the expression and activity of the cytochrome P450 3A11, an essential enzyme in drug-detoxification pathways.

Although she warns about being careful to extrapolate the specific findings from mice to humans, Claus notes the results of this research will provide a basis to further develop new strategies to beneficially modulate host metabolism by altering microbial communities in the gut.

Explore further: Testing time for stem cells

More information: mbio.asm.org/

Provided by American Society for Microbiology

4.7 /5 (6 votes)
add to favorites email to friend print save as pdf

Related Stories

Gut bacteria can cause obesity

Feb 12, 2010

Diet, exercise and genes are not the only factors which determine if someone can become obese. The composition of the intestinal bacteria may also account for a person's obesity. This is the contention of Wageningen microbiologists ...

Brain development may be influenced by bacteria in the gut

Feb 01, 2011

A team of scientists from across the globe have found that gut bacteria may influence mammalian brain development and adult behavior. The study is published in the scientific journal PNAS, and is the result of an ongoing collab ...

You are not what you eat

Nov 16, 2010

The types of gut bacteria that populate the guts of primates depend on the species of the host as well as where the host lives and what they eat. A study led by Howard Ochman at Yale University examines the gut microbial ...

Recommended for you

Growing a blood vessel in a week

47 minutes ago

The technology for creating new tissues from stem cells has taken a giant leap forward. Three tablespoons of blood are all that is needed to grow a brand new blood vessel in just seven days. This is shown ...

Testing time for stem cells

3 hours ago

DefiniGEN is one of the first commercial opportunities to arise from Cambridge's expertise in stem cell research. Here, we look at some of the fundamental research that enables it to supply liver and pancreatic ...

Team finds key signaling pathway in cause of preeclampsia

22 hours ago

A team of researchers led by a Wayne State University School of Medicine associate professor of obstetrics and gynecology has published findings that provide novel insight into the cause of preeclampsia, the leading cause ...

Rapid test to diagnose severe sepsis

Oct 23, 2014

A new test, developed by University of British Columbia researchers, could help physicians predict within an hour if a patient will develop severe sepsis so they can begin treatment immediately.

User comments : 0