One group of enzymes could have a positive impact on health, from cholesterol to osteoporosis

Feb 16, 2011

Recent studies conducted at the Institut de recherches cliniques de Montréal (IRCM) on a group of PCSK enzymes could have a positive impact on health, from cholesterol to osteoporosis. A team led by Dr. Nabil G. Seidah, Director of the Biochemical Neuroendocrinology research unit, has published six articles in prestigious scientific journals over the past four months, all shedding light on novel functions of certain PCSK enzymes.

PCSK enzymes belong to the proprotein convertase family, responsible for the conversion of an inactive protein into its active state. The latest projects led by Dr. Seidah and his team focused on five of the nine PCSK enzymes, which are implicated in diseases such as cardiovascular and neuroendocrine disorders, cancer, and viral infections.

PCSK9 could help lower bad cholesterol levels

A member of the proprotein convertase family, PCSK9 plays a key role in the regulation of cholesterol. It is involved in causing familial hypercholesterolemia, a genetic disorder characterized by high total cholesterol levels in the blood, specifically very high levels of LDL (low-density lipoprotein) or , which can lead to the early onset of cardiovascular diseases. PCSK9 is thus a target for the treatment of dyslipidemia, which results from an abnormal concentration of lipids (fat) in the blood. It is believed that inhibition of PCSK9 function could lower LDL-cholesterol levels, and such treatments are currently undergoing early phase clinical trials.

"Members of my team, led by Dr. Annik Prat and Dr. Anna Roubtsova, discovered that PCSK9 also regulates fatty acids," explains Dr. Seidah. "They investigated its role in the metabolism of body fat, and found that PCSK9 is pivotal in regulating cholesterol and fat metabolism: it maintains high circulating cholesterol levels, but it also limits fat generation."

In another study, the researchers uncovered further data on PCSK9's mechanism of action and functional structure. Their data showed that a part of PCSK9 inhibits its own function, and that acidic pH levels affect the degradation of bad cholesterol receptors.

In a third study, the team discovered that two other PCSK enzymes, Furin (PCSK3) and PC5/6 (PCSK5), reduce the level of active PCSK9. "They were able to demonstrate how enzymes of the PCSK family communicate with one another and found that liver-derived Furin cuts PCSK9 and inactivates it," adds Dr. Seidah. "This provided genetic evidence for the mechanism behind the functioning of a mutant gene found in some human hypercholesterolemic patients."

An important enzyme for osteoporosis, especially for women after menopause

The eighth member of the family (PCSK8), known as SKI-1/S1P, is critical in the intracellular pathway leading to the synthesis of and fatty acids. Researchers discovered a new function of the in the regulation of bone formation. They demonstrated that mineralization – the process by which the body uses minerals to build bone structure – was blocked by inhibitors of SKI-1/S1P.

"The team found that SKI-1/S1P also regulates the activation of a membrane-bound transcription factor required for bone formation, which could have an impact on osteoporosis," says Dr. Seidah. "This could be especially important for women after menopause, as they are most likely to develop bone disease."

A better understanding of an enzyme implicated in various cancers

PC7 (or PCSK7) is the most ancient and highly-conserved basic amino acid-specific member of the proprotein convertase family. The team of researchers, led by Estelle Rousselet, shed light on how PC7 functions within cells, and was able to define its intracellular trafficking pathways. "We identified a mechanism for PC7's unique ability to activate the precursor of epidermal growth factor, which is involved in various cancers, tumour growth, and the maintenance of stem cells," concludes Dr. Seidah.

Explore further: Growing a blood vessel in a week

Provided by Institut de recherches cliniques de Montreal

5 /5 (1 vote)
add to favorites email to friend print save as pdf

Related Stories

Bad cholesterol inhibits the breakdown of peripheral fat

Nov 20, 2008

The so called bad cholesterol (LDL) inhibits the breakdown of fat in cells of peripheral deposits, according to a study from the Swedish medical university Karolinska Institutet. The discovery reveals a novel function of ...

High insulin levels impair intestinal metabolic function

Apr 24, 2007

Nutritional scientists at the University of Alberta are the first to establish a connection between high insulin levels and dysfunction of intestinal lipid metabolism in an animal model. They believe this finding supports ...

Scientists find gene for high cholesterol in blood

Sep 15, 2010

Scientists at the Southwest Foundation for Biomedical Research (SFBR) in San Antonio have found a gene that causes high levels of bad cholesterol to accumulate in the blood as a result of a high-cholesterol diet.

Recommended for you

Growing a blood vessel in a week

Oct 24, 2014

The technology for creating new tissues from stem cells has taken a giant leap forward. Three tablespoons of blood are all that is needed to grow a brand new blood vessel in just seven days. This is shown ...

Testing time for stem cells

Oct 24, 2014

DefiniGEN is one of the first commercial opportunities to arise from Cambridge's expertise in stem cell research. Here, we look at some of the fundamental research that enables it to supply liver and pancreatic ...

Team finds key signaling pathway in cause of preeclampsia

Oct 23, 2014

A team of researchers led by a Wayne State University School of Medicine associate professor of obstetrics and gynecology has published findings that provide novel insight into the cause of preeclampsia, the leading cause ...

Rapid test to diagnose severe sepsis

Oct 23, 2014

A new test, developed by University of British Columbia researchers, could help physicians predict within an hour if a patient will develop severe sepsis so they can begin treatment immediately.

User comments : 0