Free radicals maybe good for you

Feb 28, 2011

Fear of free radicals may be exaggerated, according to scientists from Karolinska Institutet. A new study, published in The Journal of Physiology, shows that free radicals act as signal substances that cause the heart to beat with the correct force.

Free radicals are that react readily with other substances in the body, and this can have negative effects on health in certain circumstances, through the damage caused to . Free radicals can be counteracted by substances known as 'antioxidants', which are common ingredients in many dietary supplements. The idea that free radicals are generally dangerous and must be counteracted is, however, a myth, according to scientists who have conducted a new study of the role that free radicals play in heart physiology.

"As usual, it's a case of everything in moderation. In normal conditions, free radicals act as important signal substances, but very high levels or long-lasting increases can lead to disease", says Professor H?kan Westerblad, who has led the study.

When the body is subject to different types of stress, the sympathetic nervous system stimulates receptors known as beta-adrenergic receptors on the surface of heart muscle cells. This leads to several changes inside the cells, one of which is the phosphorylation of proteins. This leads to the contractions of the cells becoming stronger and the heart beats with greater force.

In the current study, the scientists show that stimulation of the beta-adrenergic receptors also leads to increased production of free radicals in the of the cells, and these then contribute to stronger contractions of the cells. When the scientists exposed the cells to , a major part of the effect of beta-adrenergic stimulation of the disappeared.

The results reveal a previously unknown regulatory mechanism of the force production in the heart, and may lead to a better understanding of various types of heart deficiency.

"Free radicals play an important role, since they contribute to the heart being able to pump more blood in stress-filled situations", says H?kan Westerblad. "On the other hand, persistent stress can lead to heart failure, and chronically increased levels of may be part of the problem here."

Explore further: Goat to be cloned to treat rare genetic disorder

More information: Daniel C Andersson, Jérémy Fauconnier, Takashi Yamada, Alain Lacampagne, Shi-Jin Zhang, Abram Katz & Håkan Westerblad , Mitochondrial production of reactive oxygen species contributes to the beta-adrenergic stimulation of mouse cardiomycytes, The Journal of Physiology, online 28 February 2011, paper issue 1 April 2011jp.physoc.org/

add to favorites email to friend print save as pdf

Related Stories

Researchers use banned herbicide to prolong worms' life

Dec 08, 2010

It sounds like science fiction – Dr. Siegfried Hekimi and his student Dr. Wen Yang, researchers at McGill's Department of Biology, tested the current "free radical theory of aging" by creating mutant worms that had increased ...

Inflammatory diseases: Scientists identify antiviral defense

Jun 15, 2010

Canadian researchers have discovered a new way the body combats respiratory viral infections. In the prestigious journal PLoS Pathogens, scientists from the University of Montreal and the University of Montreal Hospital Resear ...

Free radical cell death switch identified

Jun 01, 2006

U.S. scientists say they've found a molecular pathway that might cause stroke, diabetes, heart and neurodegenerative disease and even the aging process.

Source of major health benefits in olive oil revealed

Apr 02, 2009

Scientists have pinned down the constituent of olive oil that gives greatest protection from heart attack and stroke. In a study of the major antioxidants in olive oil, Portuguese researchers showed that one, DHPEA-EDA, protects ...

Recommended for you

Firm targets 3D printing synthetic tissues, organs

47 minutes ago

(Medical Xpress)—A University of Oxford spin-out, OxSyBio, will develop 3D printing techniques to produce tissue-like synthetic materials for wound healing and drug delivery. In the longer term the company ...

Gate for bacterial toxins found

16 hours ago

Prof. Dr. Dr. Klaus Aktories and Dr. Panagiotis Papatheodorou from the Institute of Experimental and Clinical Pharmacology and Toxicology of the University of Freiburg have discovered the receptor responsible ...

User comments : 0

More news stories

Firm targets 3D printing synthetic tissues, organs

(Medical Xpress)—A University of Oxford spin-out, OxSyBio, will develop 3D printing techniques to produce tissue-like synthetic materials for wound healing and drug delivery. In the longer term the company ...

Survival hope for melanoma patients thanks to new vaccine

(Medical Xpress)—University of Adelaide researchers have discovered that a new trial vaccine offers the most promising treatment to date for melanoma that has spread, with increased patient survival rates and improved ability ...

New clinical trial launched for advance lung cancer

Cancer Research UK is partnering with pharmaceutical companies AstraZeneca and Pfizer to create a pioneering clinical trial for patients with advanced lung cancer – marking a new era of research into personalised medicines ...

Biologists help solve fungi mysteries

(Phys.org) —A new genetic analysis revealing the previously unknown biodiversity and distribution of thousands of fungi in North America might also reveal a previously underappreciated contributor to climate ...

Robotics goes micro-scale

(Phys.org) —The development of light-driven 'micro-robots' that can autonomously investigate and manipulate the nano-scale environment in a microscope comes a step closer, thanks to new research from the ...