'Fingerprints' match molecular simulations with reality

Feb 22, 2011
As a molecule jumps between structural states (below), it creates "dynamical fingerprints" (top spectra) that can tie together high-performance simulation and experiments.

A theoretical technique developed at the Department of Energy's Oak Ridge National Laboratory is bringing supercomputer simulations and experimental results closer together by identifying common "fingerprints."

ORNL's Jeremy Smith collaborated on devising a method -- dynamical fingerprints -- that reconciles the different signals between experiments and to strengthen analyses of molecules in motion. The research will be published in the .

"Experiments tend to produce relatively simple and smooth-looking signals, as they only 'see' a molecule's motions at low resolution," said Smith, who directs ORNL's Center for and holds a Governor's Chair at the University of Tennessee. "In contrast, data from a supercomputer simulation are complex and difficult to analyze, as the atoms move around in the simulation in a multitude of jumps, wiggles and jiggles. How to reconcile these different views of the same phenomenon has been a long-standing problem."

The new method solves the problem by calculating peaks within the simulated and experimental data, creating distinct "dynamical fingerprints." The technique, conceived by Smith's former graduate student Frank Noe, now at the Free University of Berlin, can then link the two datasets.

Supercomputer simulations and modeling capabilities can add a layer of complexity missing from many types of molecular experiments.

"When we started the research, we had hoped to find a way to use computer simulation to tell us which molecular motions the experiment actually sees," Smith said. "When we were finished we got much more -- a method that could also tell us which other experiments should be done to see all the other motions present in the simulation. This method should allow major facilities like the ORNL's Spallation Neutron Source to be used more efficiently."

Combining the power of simulations and experiments will help researchers tackle scientific challenges in areas like biofuels, drug development, materials design and fundamental biological processes, which require a thorough understanding of how molecules move and interact.

"Many important things in science depend on atoms and molecules moving," Smith said. "We want to create movies of molecules in motion and check experimentally if these motions are actually happening."

View a of a protein in motion here: http://www.ornl.gov/ornlhome/hg_mer.htm

"The aim is to seamlessly integrate supercomputing with the Spallation Neutron Source so as to make full use of the major facilities we have here at ORNL for bioenergy and materials science development," Smith said.

Explore further: New method for non-invasive prostate cancer screening

Related Stories

Powerful supercomputer peers into the origin of life

Oct 04, 2010

(PhysOrg.com) -- Supercomputer simulations at the Department of Energy's Oak Ridge National Laboratory are helping scientists unravel how nucleic acids could have contributed to the origins of life.

Advancing the nuclear enterprise through better computing

May 18, 2010

Scientists at the Nuclear Science and Technology Division of the U.S. Department of Energy's Oak Ridge National Laboratory (ORNL) are merging decades of nuclear energy and safety expertise with high-performance computing ...

Recommended for you

New method for non-invasive prostate cancer screening

11 hours ago

Cancer screening is a critical approach for preventing cancer deaths because cases caught early are often more treatable. But while there are already existing ways to screen for different types of cancer, ...

How bubble studies benefit science and engineering

12 hours ago

The image above shows a perfect bubble imploding in weightlessness. This bubble, and many like it, are produced by the researchers from the École Polytechnique Fédérale de Lausanne in Switzerland. What ...

Famous Feynman lectures put online with free access

13 hours ago

(Phys.org) —Back in the early sixties, physicist Richard Feynman gave a series of lectures on physics to first year students at Caltech—those lectures were subsequently put into print and made into text ...

Single laser stops molecular tumbling motion instantly

17 hours ago

In the quantum world, making the simple atom behave is one thing, but making the more complex molecule behave is another story. Now Northwestern University scientists have figured out an elegant way to stop a molecule from ...

User comments : 0