'Fingerprints' match molecular simulations with reality

Feb 22, 2011
As a molecule jumps between structural states (below), it creates "dynamical fingerprints" (top spectra) that can tie together high-performance simulation and experiments.

A theoretical technique developed at the Department of Energy's Oak Ridge National Laboratory is bringing supercomputer simulations and experimental results closer together by identifying common "fingerprints."

ORNL's Jeremy Smith collaborated on devising a method -- dynamical fingerprints -- that reconciles the different signals between experiments and to strengthen analyses of molecules in motion. The research will be published in the .

"Experiments tend to produce relatively simple and smooth-looking signals, as they only 'see' a molecule's motions at low resolution," said Smith, who directs ORNL's Center for and holds a Governor's Chair at the University of Tennessee. "In contrast, data from a supercomputer simulation are complex and difficult to analyze, as the atoms move around in the simulation in a multitude of jumps, wiggles and jiggles. How to reconcile these different views of the same phenomenon has been a long-standing problem."

The new method solves the problem by calculating peaks within the simulated and experimental data, creating distinct "dynamical fingerprints." The technique, conceived by Smith's former graduate student Frank Noe, now at the Free University of Berlin, can then link the two datasets.

Supercomputer simulations and modeling capabilities can add a layer of complexity missing from many types of molecular experiments.

"When we started the research, we had hoped to find a way to use computer simulation to tell us which molecular motions the experiment actually sees," Smith said. "When we were finished we got much more -- a method that could also tell us which other experiments should be done to see all the other motions present in the simulation. This method should allow major facilities like the ORNL's Spallation Neutron Source to be used more efficiently."

Combining the power of simulations and experiments will help researchers tackle scientific challenges in areas like biofuels, drug development, materials design and fundamental biological processes, which require a thorough understanding of how molecules move and interact.

"Many important things in science depend on atoms and molecules moving," Smith said. "We want to create movies of molecules in motion and check experimentally if these motions are actually happening."

View a of a protein in motion here: http://www.ornl.gov/ornlhome/hg_mer.htm

"The aim is to seamlessly integrate supercomputing with the Spallation Neutron Source so as to make full use of the major facilities we have here at ORNL for bioenergy and materials science development," Smith said.

Explore further: First in-situ images of void collapse in explosives

Related Stories

Powerful supercomputer peers into the origin of life

Oct 04, 2010

(PhysOrg.com) -- Supercomputer simulations at the Department of Energy's Oak Ridge National Laboratory are helping scientists unravel how nucleic acids could have contributed to the origins of life.

Advancing the nuclear enterprise through better computing

May 18, 2010

Scientists at the Nuclear Science and Technology Division of the U.S. Department of Energy's Oak Ridge National Laboratory (ORNL) are merging decades of nuclear energy and safety expertise with high-performance computing ...

Recommended for you

First in-situ images of void collapse in explosives

7 hours ago

While creating the first-ever images of explosives using an x-ray free electron laser in California, Los Alamos researchers and collaborators demonstrated a crucial diagnostic for studying how voids affect ...

New approach to form non-equilibrium structures

Jul 24, 2014

Although most natural and synthetic processes prefer to settle into equilibrium—a state of unchanging balance without potential or energy—it is within the realm of non-equilibrium conditions where new possibilities lie. ...

Nike krypton laser achieves spot in Guinness World Records

Jul 24, 2014

A set of experiments conducted on the Nike krypton fluoride (KrF) laser at the U.S. Naval Research Laboratory (NRL) nearly five years ago has, at long last, earned the coveted Guinness World Records title for achieving "Highest ...

User comments : 0