Field researchers using the latest developments in nanotechnology to work on very small solar cells

Feb 24, 2011 by Annette Ostrand

In the solar energy field researchers are using the latest developments in nanotechnology to work on very small solar cells. Researchers are testing different ways to make them more efficient. Flexible sheets of organic solar cells have entered another niche than silicon-based solar cells.

A researcher who is using on the active layer of organic solar cells is Dr. Daniel Ayuk Mbi Egbe, a synthetic chemist at the Linz Institute for Organic Solar Cells at the Johannes Kepler University Linz in Austria and the Coordinator of African Network on Conducting Materials for (ANCMSE). He is working on a material called PPE-PPV [poly(p-phenylene-ethynylene)-alt-poly(p-phenylene-vinylene)s]. “The active layer of the solar cells is composed of the donor material, the polymer, and an acceptor which is fullerene. Through our recently published article we have shown that by using other fullerenes than the widely used PCBM we have obtained higher efficiency. I have changed the side chains of the polymer in the nanometer scale. Through our systematic approach we could explain why varying certain type of side chains show very good efficiency. The nano-morphology of the active layer is very important for the efficiency of solar cells. The majority of research groups worldwide working on solar cells is studying this active layer morphology and tries to improve it, “he said.

Egbe has achieved an efficiency of four percent and is trying to find out how to improve the efficiency in general. Not only for his system, but also for other systems researchers are working on. “The efficiency of organic solar cells has already reached eight percent and commercial products are on the market,” he said. In October 2010 the Germany-based company Helitek in collaboration with the Institute of Applied Photophysics (IAPP) at Dresden University announced that they had reached a world record efficiency of 8.3 percent for organic solar cells.

It is not Egbe’s present goal to compete with solar cells; instead he sees a complementary aspect. “ are not as stable as silicon-based solar cells, but there is a market niche which is open for them. For instance, they can be used not only on bags, so you can charge your laptop and cell phone while walking, and in windows, but on clothes because these organic cells are flexible. It’s also possible to synthetically tune the color of the used photoactive material which cannot be done with silicon-based ,” he said.

The advances in the field of nanotechnology for solar energy are changing the way we charge our electronic devices and are opening up new possibilities for people in areas without electricity.

Explore further: The latest fashion: Graphene edges can be tailor-made

add to favorites email to friend print save as pdf

Related Stories

Sunny Record: Breakthrough for Hybrid Solar Cells

Feb 02, 2010

German scientists at the Department of Microsystems Engineering (IMTEK) and the Freiburg Materials Research Center (FMF) have succeeded in developing a method for treating the surface of nanoparticles which ...

Renewable energies : the promise of organic solar cells

Apr 08, 2009

(PhysOrg.com) -- In the race to renewable energy, organic solar cells are now really starting to take off. They can be manufactured easily and cheaply, they have low environmental impact, and since they are compatible with ...

Solar Cell Researcher Explores Nanotech Ideas

Oct 05, 2009

(PhysOrg.com) -- A UT Dallas researcher envisions a time soon when plastic sheets of solar cells are inexpensively stamped out in factories and then affixed to cell phones, laptops and other power-hungry mobile ...

Recommended for you

The latest fashion: Graphene edges can be tailor-made

Jan 23, 2015

Theoretical physicists at Rice University are living on the edge as they study the astounding properties of graphene. In a new study, they figure out how researchers can fracture graphene nanoribbons to get ...

Nanotechnology changes behavior of materials

Jan 23, 2015

One of the reasons solar cells are not used more widely is cost—the materials used to make them most efficient are expensive. Engineers are exploring ways to print solar cells from inks, but the devices ...

Gold 'nano-drills'

Jan 22, 2015

Spherical gold particles are able to 'drill' a nano-diameter tunnel in ceramic material when heated. This is an easy and attractive way to equip chips with nanopores for DNA analysis, for example. Nanotechnologists ...

The importance of building small things

Jan 22, 2015

Strong materials, such as concrete, are usually heavy, and lightweight materials, such as rubber (for latex gloves) and paper, are usually weak and susceptible to tearing and damage. Julia R. Greer, professor ...

Graphene brings quantum effects to electronic circuits

Jan 22, 2015

Research by scientists attached to the EC's Graphene Flagship has revealed a superfluid phase in ultra-low temperature 2D materials, creating the potential for electronic devices which dissipate very little ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.