New energy-saving flip-flop circuit developed by Toshiba

Feb 21, 2011
Conventional circuit configuration.

Toshiba Corporation today announced that it has developed a new flip-flop circuit using 40nm CMOS process that will reduce power consumption in mobile equipment. Measured data verifies that the power dissipation of the new flip-flop is up to 77% less than that of a typical conventional flip-flop and that it achieves a 24% reduction in total power consumption when applied to a wireless LAN chip.

A flip-flop is a circuit that temporarily stores one bit of data during arithmetic processing by a digital system-on-a-chip (SoC) incorporated in mobile equipment and other digital equipment. As a typical SoC uses 100,000 to 10 million flip-flops they are an essential part of an SoC design.

Circuit configuration of new technique.

A typical flip-flop incorporates a clock buffer to produce a clock inverted signal required for the circuit's operation. When triggered by a signal from the clock, the clock buffer consumes power, even when the data is unchanged. In order to reduce this power dissipation, a power-saving design technique called clock gating is widely used to cut delivery of the clock signal to unused blocks. However, after applying the clock gating, the flip-flop active rate, a measure of data change rate per clock, is only 5-15%, indicating that there is still plenty of room for further power reduction.

In order to save power, Toshiba changed the structure of the typical flip-flop and eliminated the power-consuming clock buffer. This approach brings with it the problem of data collision between the data writing and the state holding circuitry in the flip-flop, which Toshiba overcame by adding adaptive coupling circuitry to the flip-flop. A combination of an nMOS transistor and a pMOS transistor, this circuitry adaptively weakens state-retention coupling and prevents collisions. Despite the addition of the adaptive coupling circuitry, overall simplification of the basic flip-flop configuration reduces the transistor count from 24 to 22, and the cell area is less than that of the conventional flip-flop.

This achievement will be announced on February 23 (local time) at the 2011 IEEE International Solid-State Circuits Conference (ISSCC) now being held in the United States.

Explore further: Infineon offers application optimized bipolar power modules introducing cost-effective solder bond modules

Provided by Toshiba Corporation

4.2 /5 (6 votes)
add to favorites email to friend print save as pdf

Related Stories

Evidence of second fast north-south pole flip found

Sep 06, 2010

(PhysOrg.com) -- The Earth's magnetic poles flip around every 200,000 years or so, with north becoming south and vice versa. Normally, the process takes 4-5,000 years and it ought to be impossible for the ...

Flips-flops are bad for your sole

Jun 18, 2009

Flip-flops aren't just hazardous to politicians -- they also pose risks for your feet. The floppy footwear, once contained to the beach, can now be spotted year-round.

Recommended for you

Audi to develop Tesla Model S all-electric rival

7 hours ago

The Tesla Model S has a rival. Audi is to develop all-electric family car. This is to be a family car that will offer an all-electric range of 280 miles (450 kilometers), according to Auto Express, which ...

A green data center with an autonomous power supply

13 hours ago

A new data center in the United States is generating electricity for its servers entirely from renewable sources, converting biogas from a sewage treatment plant into electricity and water. Siemens implemented ...

After a data breach, it's consumers left holding the bag

13 hours ago

Shoppers have launched into the holiday buying season and retailers are looking forward to year-end sales that make up almost 20% of their annual receipts. But as you check out at a store or click "purchase" on your online shopping cart ...

Can we create an energy efficient Internet?

13 hours ago

With the number of Internet connected devices rapidly increasing, researchers from Melbourne are starting a new research program to reduce energy consumption of such devices.

Brain inspired data engineering

14 hours ago

What if next-generation ICT systems could be based on the brain's structure and its cognitive and adaptive processes? A groundbreaking paradigm of brain-inspired intelligent ICT architectures is being born.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.