Modeling radiation energy deposition in a complex biological system

Feb 16, 2011
Microscope image of a vertical slice through a skin-tissue model showing the range of penetration depths calculated for 25-, 50-, and 90-keV electron beams. The centers of the bars mark the depths at which half of the electrons are expected to stop. Approximate widths of the three layers in the epidermis are indicated.

Research involving selective irradiation of a human skin tissue model is improving how scientists determine the overall effects of low doses of ionizing radiation such as might be received during certain medical procedures or occupational exposures. Scientists at Washington State University-Tri Cities and the Pacific Northwest National Laboratory are modeling electron energy deposition patterns as produced by the electron microbeam developed at PNNL to determine how it may be used in the study of more complex biological systems.

Cells growing as a monolayer in a are frequently used for determining responses to environmental insults such as radiation. However, this model does not include cell-cell and cell-matrix interactions critical to maintaining tissue homeostasis. Using a more realistic and complete tissue model is critical to the development of a mechanistic understanding of the cellular radiation responses that occur in vivo.

In this study, the WSU-TC and PNNL scientists used an artificial skin model made of normal human epidermal and called fibroblasts. The advantage of the model is that it has a well-defined cellular composition that scientists can modify to gain a fundamental understanding of how different cell types interact following irradiation. This understanding will help development of biologically based risk models and help ensure that radiation protection standards are adequate and appropriate.

In a series of recent papers, fluorescent and confocal microscopy images have been used to characterize the detailed cellular morphology of the skin tissue model. Using these images as a guide, Monte Carlo simulations have been performed to establish the energy deposition patterns on the microscopic scale. The determined the feasibility of selectively irradiating only the epidermal layer using the PNNL-developed electron microbeam. Microbeams provide a convenient way to investigate radiation-induced bystander effects. Bystander effects are responses in unirradiated cells that are triggered by signals received from irradiated neighboring cells.

Results of the computer simulation suggest that the skin-tissue model epidermis can be irradiated without significant exposure to the dermal layer. This is because of the energy dependence of the electron microbeam's penetration of the skin sample. The result is a more realistic radiation energy deposition scenario.

Now that the scientists are confident that selective irradiation of the epidermis of skin tissue is feasible using the PNNL electron microbeam, they will begin using this device to understand the role of particular cell types in the radiation-induced response.

Explore further: Structure of sodium channels different than previously believed

More information: Miller JH, et al. 2011. "Simulation of Electron-Beam Irradiation of Skin Tissue Model." Radiation Research 175(1):113-118. doi: 10.1667/RR2339.1
Miller JH, et al. 2011. "Confocal microscopy for modeling electron microbeam irradiation of skin." Radiation and Environmental Biophysics (in press).

add to favorites email to friend print save as pdf

Related Stories

The closest look ever at native human tissue

Dec 05, 2007

Seeing proteins in their natural environment and interactions inside cells has been a long-standing goal. Using an advanced microscopy technique called cryo-electron tomography, researchers from the European ...

Production line for artificial skin

Dec 09, 2008

Some patients wish they had a second skin – for instance because their own skin has been burnt in a severe accident. But transplanting skin is a painstaking task, and a transplant that has to cover large ...

Hyperoxia may slow formation of wrinkles

Jun 29, 2010

It's no secret that UVB radiation from the sun causes wrinkles. However, a Japanese study published in the American Journal of Physiology -- Regulatory, Integrative and Comparative Physiology indicates that oxygen may he ...

Recommended for you

Breakthrough points to new drugs from nature

Apr 16, 2014

Researchers at Griffith University's Eskitis Institute have developed a new technique for discovering natural compounds which could form the basis of novel therapeutic drugs.

World's first successful visualisation of key coenzyme

Apr 16, 2014

Japanese researchers have successfully developed the world's first imaging method for visualising the behaviour of nicotine-adenine dinucleotide derivative (NAD(P)H), a key coenzyme, inside cells. This feat ...

User comments : 0

More news stories

NASA's space station Robonaut finally getting legs

Robonaut, the first out-of-this-world humanoid, is finally getting its space legs. For three years, Robonaut has had to manage from the waist up. This new pair of legs means the experimental robot—now stuck ...

Ex-Apple chief plans mobile phone for India

Former Apple chief executive John Sculley, whose marketing skills helped bring the personal computer to desktops worldwide, says he plans to launch a mobile phone in India to exploit its still largely untapped ...

Filipino tests negative for Middle East virus

A Filipino nurse who tested positive for the Middle East virus has been found free of infection in a subsequent examination after he returned home, Philippine health officials said Saturday.

Egypt archaeologists find ancient writer's tomb

Egypt's minister of antiquities says a team of Spanish archaeologists has discovered two tombs in the southern part of the country, one of them belonging to a writer and containing a trove of artifacts including reed pens ...