Complexity in core-shell nanomagnets

Feb 15, 2011
(curves) Magnetic hysteresis of core-shell Fe@Fe3O4 nanoparticles at 5 K under field cooling (+10 kOe). (color images) Cutaway (micromagnetic) view of spin configurations in a core-shell nanoparticle during a field sweep under field cooling conditions. Filled circles (green, red, and black) represent magnetic moments in the ferromagnetic core, ferrimagnetic shell, and core-shell interface, respectively. For simplicity, each ferrimagnetic domain in the shell layer is represented as a spin lattice with a net moment. Dashed lines demarcate the boundaries of crystalline domains within the shell layer, and open circles indicate residual (uncompensated) spins at the surface or domain boundaries.

The magnetic exchange bias coupling between core and shell depends critically on the "frozen spins" that reside at the interface between the two different magnetic nanomaterials, according to users from Purdue University working with the Electronic & Magnetic Materials & Devices Group.

The relative population of such frozen spins can be modulated by external physical parameters, such as the strength of the applied cooling field and the cycling history of magnetic field sweeps (training effect).

A more complex change occurs when core-shell nanoparticles are aged under ambient conditions. Along with structural evolution from well-defined core-shell nanostructures to nanoparticles containing multiple voids at the interface, there is a significant increase in the population of frozen spins, both of which affect the magnetic properties.

Core-shell Fe@Fe3O4 nanoparticles exhibit substantial exchange bias at low temperatures, mediated by unidirectionally aligned moments at the core-shell interface. These spins are frozen into magnetic alignment with field cooling and are depinned in a temperature-dependent manner.

The population of such frozen spins has a direct impact on both coercivity (HC) and the exchange-bias field (HE), which are modulated by external physical parameters, such as the strength of the applied cooling field and the cycling history of magnetic field sweeps (training effect).

Aging of the core-shell nanoparticles under ambient conditions results in a gradual decrease in magnetization but overall retention of HC and HE, as well as a large increase in the population of frozen spins.

These changes are accompanied by a structural evolution from well-defined core-shell structures to particles containing multiple voids, attributable to the Kirkendall effect. Energy-filtered and high-resolution transmission electron microscopy both indicate further oxidation of the shell layer, but the iron core is remarkably well preserved.

The increase in frozen spin population with age is responsible for the overall retention of exchange bias, despite void formation and other oxidation-dependent changes. The exchange-bias field becomes negligible upon deliberate oxidation of Fe@Fe3O4 nanoparticles into yolk-shell particles, with a nearly complete physical separation of core and shell.

Explore further: Spider's web weaves way to advanced networks and displays

More information: Q.K. Ong, et al. Phys. Chem. C , 115 (6), 2665-2672 (2011) online

Related Stories

New Nanoparticle Structure Boosts Magnetic Properties

Dec 19, 2005

Magnetic nanoparticles have shown promise as contrast-enhancing agents for improving cancer detection using magnetic resonance imaging (MRI), as miniaturized heaters capable of killing malignant cells, and as targeted drug ...

Creating Highly Sought Magnetic Nanoparticles in One Step

May 02, 2008

Researchers from the University of Minnesota have demonstrated a one-step technique for producing a class of magnetic nanoparticles that could be used in everything from biomedical applications to data storage. ...

Studying Magnetic Interface Ferromagnetism

Jun 28, 2007

The development of various magnetic-based devices, such as read-heads found inside your computer, depends on the discovery and improvement of new materials and magnetic effects.

Recommended for you

The simplest element: Turning hydrogen into 'graphene'

Dec 16, 2014

New work from Carnegie's Ivan Naumov and Russell Hemley delves into the chemistry underlying some surprising recent observations about hydrogen, and reveals remarkable parallels between hydrogen and graphene ...

Future batteries: Lithium-sulfur with a graphene wrapper

Dec 16, 2014

What do you get when you wrap a thin sheet of the "wonder material" graphene around a novel multifunctional sulfur electrode that combines an energy storage unit and electron/ion transfer networks? An extremely ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.