Researchers find clues to mystery of preterm delivery

Feb 10, 2011

Researchers at Yale School of Medicine have found that excessive formation of calcium crystal deposits in the amniotic fluid may be a reason why some pregnant women suffer preterm premature rupture of the membranes (PPROM) leading to preterm delivery.

This is a key breakthrough in solving the mystery of , a leading cause of death and permanent disability in . The findings will be presented in an abstract at the Society for Maternal-Fetal Medicine Scientific Sessions on February 10 in San Francisco, California.

Researchers know that infection, maternal stress and placental bleeding can trigger some preterm deliveries, but the cause of many other preterm deliveries remains unknown. In these cases, women experience early contractions, cervical dilation and a torn amniotic sac.

A team of researchers in the Department of Obstetrics, Gynecology & Reproductive Sciences at Yale, including first author Lydia Shook and her mentor Irina Buhimschi, M.D., investigated the idea that calcification—excessive buildup of calcium—of the fetal membranes may lead to PPROM and preterm birth. "We noticed that in many women, analysis of the proteins in their amniotic fluid did not show signs of inflammation, and we could not find any cause for their preterm birth," said Shook, a Yale medical student. "We took a fresh look for what was causing breakdown of the membranes, which can lead to lost elasticity, integrity and eventually rupture."

Scientists know that calcifying nanoparticles are involved in many degenerative conditions including arthritis and atherosclerosis. "These mineral-protein complexes can disrupt normal cellular processes and cause cell death," Shook said. "We wondered whether they could also be responsible for damage to the fetal membranes in ."

Shook and her co-authors used a stain to look for deposits in placental and fetal membrane tissue from patients with PPROM and preterm birth, as well as full-term deliveries. They used a sterile culture technique to determine whether amniotic fluid can form nanoparticles. They then exposed fetal membranes to the cultured nanoparticles to determine their ability to induce cell dysfunction, damage and cell death.

The team found evidence of calcification of fetal membranes collected from preterm deliveries. Fetuin, one of the major proteins involved in nanoparticle formation, was found in these deposits. Levels of fetuin in amniotic fluid were lower in women who delivered with PPROM compared to those who delivered early with intact membranes.

"This preliminary evidence suggests that has the potential to form nanoparticles and deposit them in the fetal membranes," said Shook. "Low fetuin may be a biomarker for women at risk of PPROM. The goal of this research is to identify women at risk of developing this condition early in their pregnancy and to intervene with targeted therapy."

Explore further: Growing a blood vessel in a week

add to favorites email to friend print save as pdf

Related Stories

Incidence of Cerebral Palsy on Rise in United States

Feb 08, 2010

(PhysOrg.com) -- Cerebral palsy (CP) has increased in infants born prematurely in the United States, according to data presented by researchers from Loyola University Health System (LUHS). These findings were reported at ...

Recommended for you

Growing a blood vessel in a week

Oct 24, 2014

The technology for creating new tissues from stem cells has taken a giant leap forward. Three tablespoons of blood are all that is needed to grow a brand new blood vessel in just seven days. This is shown ...

Testing time for stem cells

Oct 24, 2014

DefiniGEN is one of the first commercial opportunities to arise from Cambridge's expertise in stem cell research. Here, we look at some of the fundamental research that enables it to supply liver and pancreatic ...

Team finds key signaling pathway in cause of preeclampsia

Oct 23, 2014

A team of researchers led by a Wayne State University School of Medicine associate professor of obstetrics and gynecology has published findings that provide novel insight into the cause of preeclampsia, the leading cause ...

Rapid test to diagnose severe sepsis

Oct 23, 2014

A new test, developed by University of British Columbia researchers, could help physicians predict within an hour if a patient will develop severe sepsis so they can begin treatment immediately.

User comments : 0