Researchers pinpoint how one cancer gene functions

Feb 02, 2011

For several decades, researchers have been linking genetic mutations to diseases ranging from cancer to developmental abnormalities. What hasn't been clear, however, is how the body's genome sustains such destructive glitches in the first place. Now a team of Mayo Clinic scientists and collaborators provide an unprecedented glimpse of a little-understood gene, called MMSET, revealing how it enables disease-causing mutations to occur. The findings appear in the current issue of Nature.

"MMSET had been known for many years, and had been shown to be mutated in several diseases, but its function had never quite been pinpointed," says lead author Zhenkun Lou, Ph.D., Mayo Clinic pharmacologist and senior author of the study.

The researchers found that normally-functioning MMSET is usually helpful. It plays a restorative role within the genome, recruiting proteins like p53-binding protein 1 to repair breaks that occur in DNA and to maintain genetic stability. But when MMSET malfunctions, the protective pathway falls short, and a cascade of mutations take place that can lead to disease processes.

"It was not clear before the study how p53-binding protein 1 was targeted to sites of . We found MMSET regulates this critical pathway," Dr. Lou says. "But when the gene is impaired, cells don't have the correct response to DNA damage." Misregulation of MMSET has been implicated in cancers like the plasma cell cancer as well as the inherited disorder of severe retardation known as Wolf-Hirschhorn syndrome, even though the MMSET mutation looks different in the two diseases.

While the study answers a long baffling mystery about the function of the gene, it also suggests avenues for new therapeutic approaches for several disorders, notes Dr. Lou. One possible route for clinical investigation is for patients with MMSET mutations, which keep DNA from undergoing efficient repair, to be given treatment that will help minimize . For instance, patients with defects in DNA damage-maintenance machinery often succumb to neurological disorders (e.g., ataxia telangiectasia and Wolf-Hirschhorn syndrome), since neurons are very sensitive to DNA damage spontaneously occurring in cells. These patients could be given anti-oxidative treatment to help maintain the health of DNA and preserve neurons.

The finding also suggests new thinking about treating certain cancers. MMSET protein has been found in abundance in hard-to-treat malignancies such as multiple myeloma and glioblastoma, a devastating brain tumor.

"It may be that these cancers don't respond well to chemotherapy treatment, which works by interrupting DNA, because the [MMSET producing] cancer cells are more efficient at repairing themselves," Dr. Lou says. Dr. Lou is currently working with the National Institutes of Health-Mayo Brain Tumor SPORE (Specialized Program of Research Excellence) to investigate whether MMSET levels will be a biomarker to guide glioblastoma treatment. Future investigations may involve inhibiting MMSET in proliferating cancer cells, which may make cancers more responsive to cell-killing chemotherapies.

Explore further: Researchers discover new gene responsible for traits involved in diabetes

Related Stories

A new cellular pathway linked to cancer is identified

Jul 24, 2008

In the life of a cell, the response to DNA damage determines whether the cell is fated to pause and repair itself, commit suicide, or grow uncontrollably, a route leading to cancer. In a new study, published in the July 25th ...

New step in DNA damage response in neurons discovered

Jan 18, 2009

Researchers have identified a biochemical switch required for nerve cells to respond to DNA damage. The finding, scheduled for advance online publication in Nature Cell Biology, illuminates a connection between proteins involv ...

Chaperone enzyme provides new target for cancer treatments

Jan 18, 2011

UNC scientists who study how cells repair damage from environmental factors like sunlight and cigarette smoke have discovered how a "chaperone" enzyme plays a key role in cells' ability to tolerate the DNA damage that leads ...

Recommended for you

Gene variant that dramatically reduces 'bad' lipids

Sep 16, 2014

In the first study to emerge from the UK10K Project's cohort of samples from the general public, scientists have identified a rare genetic variant that dramatically reduces levels of certain types of lipids in the blood. ...

New diagnostic method identifies genetic diseases

Sep 16, 2014

People with genetic diseases often have to embark on an odyssey from one doctor to the next. Fewer than half of all patients who are suspected of having a genetic disease actually receive a satisfactory diagnosis. Scientists ...

User comments : 0