BU's Kunz to introduce new discipline of aeroecology

Feb 18, 2011

A team of research biologists headed by Thomas H. Kunz, professor of biology and director of the Center of Ecology and Conservation Biology at Boston University, will conduct a symposium on the emerging scientific discipline of aeroecology at this year's American Association for the Advancement of Science (AAAS) annual meeting. Aeroecology is a new discipline whose unifying concept is a focus on the aerosphere and the myriad organisms that inhabit and depend on this aerial environment for their existence.

In the history of science and technology, an infrequent combination of empirical discoveries, theories and technology developments converge that make it possible to recognize a new discipline. Past examples include , biomechanics and with more recent developments of and – all disciplines that are now well established in the lexicon of modern science and technology.

Aeroecology is one such emerging discipline, notes Thomas H. Kunz, Boston University Professor of Biology and Director of the Center of Ecology and and the lead author of "Aeroecology: probing and modeling the aerosphere," a research report* in Integrative and Comparative Biology, based on a symposium sponsored by the Society for Integrative and Comparative Biology in January 2008.

Kunz, who is best known for his extensive research on bats, will explain how aeroecology embraces and integrates the domains of atmospheric science, earth science, geography, ecology, computer science, computational biology, and engineering.

The unifying concept that underlies aeroecology is its focus on the planetary boundary layer of the Earth's atmosphere, or aerosphere, that supports the myriad airborne organisms that, in large part, depend upon this fluid environment for their existence. Organisms that use the aerosphere, specifically arthropods, birds and bats, are also influenced by an increasing number of anthropogenic or man-made conditions and structures, notably lighted towns and cities, air pollution, skyscrapers, aircraft, radio and television towers, plus a recent proliferation of communication towers and wind turbines that dot the Earth's landscape.

In addition, human-altered landscapes increasing are characterized by deforestation, intensive agriculture, urbanization, and assorted industrial activities that are rapidly and irreversibly transforming the quantity and quality of available terrestrial and aquatic habitats that airborne organisms rely upon. These conditions are known to influence navigational cues, sources of food, water, nesting and roosting habitats—factors that can in turn alter the structure and function of terrestrial and aquatic ecosystems and the assemblages of organisms therein.

Kunz adds, "Climate change and its expected increase in global temperatures, altered circulation of air masses, and effects on local and regional weather patterns are expected to have profound impacts on the foraging and migratory behavior of insects, birds and bats."

"In contrast to organisms that depend strictly on terrestrial or aquatic existence, those that routinely use the aerosphere are almost immediately influenced by changing atmospheric conditions (e.g. winds, air density, precipitation, air temperature) sunlight, polarized light, moonlight and geomagnetic and gravitational forces… as Kunz notes.

Ecologists who study animals that use the aerosphere face three important challenges:

1) To discover best methods for detecting the presence, taxonomic identity, diversity, and activity of organisms that use this aerial environment,

2) To identify ways to integrate relevant environmental variables at different temporal and spatial scales, and

3) To determine how best to understand and interpret behavioral, ecological, and evolutionary responses of organisms in the context of complex meteorological conditions and patterns within both natural and anthropogenically-altered environments.

"Appropriate integration of diverse tools and concepts for probing into the lives of organisms aloft can help inform important ecological and evolutionary concepts and management decisions associated with the spread of invasive species, emergence of infectious diseases, altered biodiversity, and the sustainability of terrestrial, aquatic, and aerospheric environments," states Kunz.

Explore further: Stanford researchers rethink 'natural' habitat for wildlife

More information: * Kunz. T.H., S.A. Gauthreaux, Jr., N.I. Hristov, J.W. Horn, G. Jones, E.K.V. Kalko, R.P. Larkin, G.F. McCracken, S.W. Swartz, R.B. Srygley, R. Dudley, J.K. Westbrook, and M. Wikelski. 2008. Aeroecology: probing and modeling the aerosphere. Integrative and Comparative Biology, 48: 1-11; doi:10.1093/icb/icn037

The symposium is scheduled from 3:00-4:30 PM, Saturday, February 19, 2011, in Room 102B in the Washington Convention Center.

add to favorites email to friend print save as pdf

Related Stories

Seabirds' movement patterns tied to what fishermen toss away

Jan 28, 2010

Humans and human activities have clearly altered the Earth's landscape and oceans in countless ways, often to the detriment of other plants and animals. But a new report published online on January 28th in Current Biology shows ...

Interim protections sought for little brown bats

Dec 20, 2010

Scientists and conservation groups filed a formal request today asking the U.S. Fish and Wildlife Service to determine if little brown bats, once the most common bat species in the Northeast, need protection under the Endangered ...

Saving Space: Latitude’s not Enough

Nov 14, 2006

According to a recent study in Ecological Monographs, predicting the impact of climate change on organisms is much more complicated than simply looking at species northern and southern range limits.

Recommended for you

Plants with dormant seeds give rise to more species

Apr 18, 2014

Seeds that sprout as soon as they're planted may be good news for a garden. But wild plants need to be more careful. In the wild, a plant whose seeds sprouted at the first warm spell or rainy day would risk disaster. More ...

Scientists tether lionfish to Cayman reefs

Apr 18, 2014

Research done by U.S. scientists in the Cayman Islands suggests that native predators can be trained to gobble up invasive lionfish that colonize regional reefs and voraciously prey on juvenile marine creatures.

User comments : 0

More news stories

Cancer stem cells linked to drug resistance

Most drugs used to treat lung, breast and pancreatic cancers also promote drug-resistance and ultimately spur tumor growth. Researchers at the University of California, San Diego School of Medicine have discovered ...