Broken bones on the mend with anti-bacterial collar

Feb 11, 2011

Orthopaedic experts at The University of Nottingham are hoping to reduce the rate of infections that often occur in the pinning of broken bones by developing a special collar to counter dangerous microbes.

Using technology developed by Dr. Roger Bayston in the School of Clinical Sciences, PhD student and nursing specialist Jennie Walker has been awarded an allied health professional training fellowship of almost £160,000 from Arthritis Research UK to devise an anti-microbial collar to prevent bacterial infections associated with broken bones.

Pins used to mend broken bones can often lead to infection. Up to 40 per cent of patients being treated in this way develop infections, which can in the worst cases, lead to osteomylitis (bone infection) and septicaemia.

Dr. Bayston’s anti-microbial catheter, used in the treatment of hydrocephalus (water on the brain) and severe kidney failure has already benefitted almost half a million patients worldwide, reducing infection rates by between 60 to 85 per cent.

Dr. Bayston, who is based in the Division of Orthopaedic and Accident Surgery and specialises in research into surgical infections said: “We plan to use this same technology to design and test an antibiotic-impregnated collar which can be fitted to the skin surface for use in pinning broken bones.”

Serious fractures are often treated by inserting metal pins through the skin into the bone and stabilised by a metal frame.

He added: “The idea is to develop a cheap and user-friendly device impregnated with a substance that will kill bacteria before it can work its way down the pin and get into the wound, and can be taken off the patient, washed and replaced.”

Ms. Walker, who is also employed by the Nottingham University Hospitals NHS Trust to teach 5th year medical students, will carry out a pilot study to determine the collar’s usefulness in patients at the Queens Medical Centre, under the supervision of Dr Bayston, and Brigitte Scammell, Professor of Orthopaedic Sciences and Head of Division of Orthopaedic and Accident Surgery in the School of Clinical Sciences.

Ms. Walker said: “We need to carry out further research to perfect the collar. As the antimicrobial agents that we will use are already in clinical use we don’t expect to encounter any problem with side-effects.”

The researchers also want to find out which bacteria are most commonly associated with pin site infections and whether there are some patient groups who are at particularly high risk of . They believe the device could also reduce NHS costs by avoiding the complications associated with infections.

Explore further: Biologists reprogram skin cells to mimic rare disease

add to favorites email to friend print save as pdf

Related Stories

Staph infections carry long-term risks

Jul 03, 2008

Patients who harbor the highly contagious bacterium causing staph infections can develop serious and sometimes deadly symptoms a year or longer after initial detection, a UC Irvine infectious disease researcher has found.

Recommended for you

The impact of bacteria in our guts

4 hours ago

The word metabolism gets tossed around a lot, but it means much more than whether you can go back to the buffet for seconds without worrying about your waistline. In fact, metabolism is the set of biochemical ...

Stem cell therapies hold promise, but obstacles remain

4 hours ago

(Medical Xpress)—In an article appearing online today in the journal Science, a group of researchers, including University of Rochester neurologist Steve Goldman, M.D., Ph.D., review the potential and ch ...

New hope in fight against muscular dystrophy

5 hours ago

Research at Stockholm's KTH Royal Institute of Technology offers hope to those who suffer from Duchenne muscular dystrophy, an incurable, debilitating disease that cuts young lives short.

Biologists reprogram skin cells to mimic rare disease

23 hours ago

Johns Hopkins stem cell biologists have found a way to reprogram a patient's skin cells into cells that mimic and display many biological features of a rare genetic disorder called familial dysautonomia. ...

User comments : 0