Increasing brain enzyme may slow Alzheimer's disease progression

Feb 16, 2011
Stanislav Karsten, an LA BioMed principal researcher, is the lead author of a new study on Alzheimer's disease. Credit: LA BioMed

Increasing puromycin-sensitive aminopeptidase, the most abundant brain peptidase in mammals, slowed the damaging accumulation of tau proteins that are toxic to nerve cells and eventually lead to the neurofibrillary tangles, a major pathological hallmark of Alzheimer's disease and other forms of dementia, according to a study published online in the journal, Human Molecular Genetics.

Researchers found they could safely increase the puromycin-sensitive aminopeptidase, PSA/NPEPPS, by two to three times the usual amount in animal models, and it removed the tau proteins in the neurons. Removing the tau proteins restored neuronal density and slowed down disease progression. Researchers detected no abnormalities caused by the increase in PSA/NPEPPS, suggesting that elevating PSA/NPEPPS activity may be a viable approach to treat Alzheimer's disease and other forms of dementia, known a tauopathies.

"Our research demonstrated that increasing the brain enzyme known as PSA/NPEPPS can effectively block the accumulation of that is toxic to and slow down the progression of neural degeneration without unwanted side effects," said Stanislav L. Karsten, PhD, the corresponding author for the study and a principal investigator at Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center (LA BioMed). "These findings suggest that increasing this naturally occurring brain peptidase, PSA/NPEPPS, may be a feasible therapeutic approach to eliminate the accumulation of unwanted toxic proteins, such as tau, that cause the neural degeneration associated with the devastating effects of Alzheimer's disease and other forms of dementia."

Alzheimer's disease affects 2 million to 4 million Americans, and their ranks are expected to grow to as many as 14 million by the middle of the 21st century as the population ages.

The potential for PSA/NPEPPS to protect neurons from degeneration was first reported in a 2006 issue of the journal, Neuron. At that time, researchers hypothesized that PSA/NPEPPS may be a natural mechanism for protecting neurons. Dr. Karsten, who was the lead author of the 2006 study, said the new study is the first to provide the data confirming the neuroprotective role of PSA/NPEPPS in mammals.

Explore further: Low tolerance for pain? The reason may be in your genes

More information: The research paper may be accessed at hmg.oxfordjournals.org/content/early/2011/02/14/hmg.ddr065.full.pdf+html

Provided by Los Angeles Biomedical Research Institute at Harbor

5 /5 (2 votes)
add to favorites email to friend print save as pdf

Related Stories

Untangling a pathology of Alzheimer's

Sep 06, 2006

Researchers have uncovered what appears to be a natural protective mechanism against a central cause of neuronal death in Alzheimer's and similar neurodegenerative diseases. They theorize that it may be possible to use drugs ...

Tau disrupts neural communication prior to neurodegeneration

Dec 22, 2010

A new study is unraveling the earliest events associated with neurodegenerative diseases characterized by abnormal accumulation of tau protein. The research, published by Cell Press in the December 22 issue of the journal ...

Recommended for you

Low tolerance for pain? The reason may be in your genes

14 hours ago

Researchers may have identified key genes linked to why some people have a higher tolerance for pain than others, according to a study released today that will be presented at the American Academy of Neurology's 66th Annual ...

Refining the language for chromosomes

Apr 17, 2014

When talking about genetic abnormalities at the DNA level that occur when chromosomes swap, delete or add parts, there is an evolving communication gap both in the science and medical worlds, leading to inconsistencies in ...

User comments : 0

More news stories

Cancer stem cells linked to drug resistance

Most drugs used to treat lung, breast and pancreatic cancers also promote drug-resistance and ultimately spur tumor growth. Researchers at the University of California, San Diego School of Medicine have discovered ...

Finnish inventor rethinks design of the axe

(Phys.org) —Finnish inventor Heikki Kärnä is the man behind the Vipukirves Leveraxe, which is a precision tool for splitting firewood. He designed the tool to make the job easier and more efficient, with ...

Making graphene in your kitchen

Graphene has been touted as a wonder material—the world's thinnest substance, but super-strong. Now scientists say it is so easy to make you could produce some in your kitchen.