Researchers develop unique combination of elements for thermal nanotape

January 24, 2011

Semiconductor Research Corporation (SRC) and researchers from Stanford University have developed a novel combination of elements that yields a unique nanostructure material for packaging. This advance should allow longer life for semiconductor devices while costing less than current state-of-the-art materials. In addition to chip manufacturers, several other industries could also gain greater product efficiencies from related thermal energy management technology.

For , the improvement will come in the form of packaging for devices. Presently, manufacturers must rely on tiny pins or thick solder to bond sections of the semiconductor in order for the device to perform. However, current solder materials tend to degrade and fail due to heat and . In order to continue the scaling of , SRC and Stanford have researched materials that provide a high thermal connectivity — comparable to copper — with the flexible compliance of foam. The answer has been created through a nanostructured thermal tape that conducts heat like a metal while allowing the neighboring materials to expand and contract with temperature changes (metals are too stiff to allow this). This ability to reduce chip temperatures while remaining compliant is a key breakthrough for electronic packaging.

“A big roadblock to increasing the performance of modern chips is hot spots, or millimeter-sized regions of high power generation. This advance in nanostructured materials and methods will allow us to better cool these spots and serves as a key enabler for densification of computational circuitry,” said Professor Ken Goodson, lead researcher for SRC at Stanford University. “This can help packaging to withstand the demands of Moore’s Law.”

In addressing the challenges of miniaturization, the first line of defense for hot spots is the interface material. Incorporating nearly two decades of advanced research and simulations for problems at the packaging level — much of it funded by SRC — the Stanford team ultimately arrived at their unique combination of binder materials surrounding carbon nanotubes. This innovation is expected to facilitate the highest thermal conduction and the most desirable level of elasticity of any known packaging solutions.

“Researchers love to create useful materials and structures that we’ve never seen before, and this new thermal nanotape revolutionizes the chip’s heat sink contact,” said Jon Candelaria, director of Interconnect and Packaging Sciences at SRC. “Instead of being forced to rely upon the properties of just a single material, this combination gives the integrated circuits industry an opportunity to circumvent severe performance limitations and continue to improve without adding cost.”

While the research was funded by members of SRC to enhance computer chips, demand for applications of this kind of thermal interface also is rising in other industries. For instance, several automotive-related companies hope to recover electrical power from hot exhaust gases in cars and trucks using thermoelectric energy converters — enabling better fuel economy — but reliable interfaces are a problem for this technology. Professor Goodson leads a major grant from the National Science Foundation-Department of Energy Partnership on Thermoelectric Devices for Vehicle Applications, with the goal of transferring the SRC-funded interface work to vehicles.

Patents for the technology are pending. The next step in the research is to license the new methods and materials to advanced thermal-interface companies for perfection of the application. End users are expected to benefit from the technology by 2014.

Explore further: Philips introduces High Performance Automotive TrenchMOS MOSFETs in LFPAK

More information: pubs.acs.org/doi/abs/10.1021/nl100443x

Related Stories

A new material could act as a nanofridge for microchips

October 8, 2008

In the past few years, the design and manufacturing of circuits at nanoscopic scale for integrated devices has become one of the frontier fields in new material science and technology. The significant reduction achieved in ...

Recommended for you

Graphene under pressure

August 25, 2016

Small balloons made from one-atom-thick material graphene can withstand enormous pressures, much higher than those at the bottom of the deepest ocean, scientists at the University of Manchester report.

Designing ultrasound tools with Lego-like proteins

August 25, 2016

Ultrasound imaging is used around the world to help visualize developing babies and diagnose disease. Sound waves bounce off the tissues, revealing their different densities and shapes. The next step in ultrasound technology ...

Nanovesicles in predictable shapes

August 25, 2016

Beads, disks, bowls and rods: scientists at Radboud University have demonstrated the first methodological approach to control the shapes of nanovesicles. This opens doors for the use of nanovesicles in biomedical applications, ...

'Artificial atom' created in graphene

August 22, 2016

In a tiny quantum prison, electrons behave quite differently as compared to their counterparts in free space. They can only occupy discrete energy levels, much like the electrons in an atom - for this reason, such electron ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.