Uncovering the trail behind growing too old, too soon

Jan 24, 2011

Scientists from A*STAR's Institute of Medical Biology (IMB) in Singapore and the University of Hong Kong's Department of Medicine have produced the world's first human cell model of progeria, a disease resulting in severe premature ageing in one in four to eight million children worldwide. This model has allowed them to make new discoveries concerning the mechanism by which progeria works. Their findings were published this month in the prestigious scientific journal, Cell Stem Cell(1).

Hutchinson-Gilford Progeria Syndrome, also known as progeria, is caused by a mutation in the gene encoding for the protein lamin A, an important component of the membrane surrounding a cell's nucleus. The mutation results in a truncated form of lamin A called progerin, which in turn causes misshapen and . Children with progeria suffer symptoms of premature ageing, including growth retardation, baldness, and atherosclerosis (hardened arteries), and all die in their early teens from either heart attack or stroke.

Led by IMB's Profs Alan Colman and Colin Stewart, the team used a novel technique of deriving induced pluripotent stem (iPS) from cells of human progeria patients. This human progeria model allows the group to trace and analyse the distinctive characteristics of progeria as it progresses in . Previously, only mouse models of the disease were available.

Said Prof Colman, "While mouse models of progeria have been informative, no one recapitulates all the symptoms seen in humans. Our human progeria model allows us to examine the pathology of the disease at a much closer resolution than previously possible."

The researchers used their iPS cells to identify two types of cells - mesenchymal (MSCs) and vascular smooth muscle cells (VSMCs) – that were particularly adversely affected by progeria. This means that a young patient with progeria would typically have fewer MSCs and VSMCs than other children. MSCs were found to be very sensitive to a low oxygen environment and their losses could delay renewal of the various tissues they gave rise to, thus exacerbating the patient's symptoms of ageing. The same effect on VSMCs could explain why their number was reduced in the patient's heart vessels.

Background

The group's findings are a significant boost to existing research on over 10 diseases associated with lamin gene mutations. Prof Stewart previously led a study in mice at IMB showing that progeria affected the connective tissues, potentially via defects in a signaling pathway connecting the nuclear lamina with the extracellular matrix (2) and which was associated with death of the smooth muscle in major blood vessels.

Said Prof Stewart, "This new study provides further evidence for the role of lamin processing in connective tissue function, as well as insights into the normal ageing process. We hope to soon find new routes of intervention to treat this incurable disease. Such interventions may be of use in treating atherosclerosis in general, a condition afflicting many millions of individuals."

Explore further: Mutation may cause early loss of sperm supply

More information: References:

(1) A Human iPSC Model of Hutchinson Gilford Progeria Reveals Vascular Smooth Muscle and Mesenchymal Stem Cell Defects. 7 Jan 2011. Cell Stem Cell, Volume x, Issue y. DOI: 10.1016/j.stem.2010.12.002

(2) Functional Coupling between the Extracellular Matrix and Nuclear Lamina by Wnt Signaling in Progeria. Developmental Cell, 2010; 19 (3): 413-425 DOI: 10.1016/j.devcel.2010.08.013

Provided by Agency for Science, Technology and Research (A*STAR)

not rated yet
add to favorites email to friend print save as pdf

Related Stories

New insight into 'accelerated aging' disease

Sep 13, 2010

Hutchinson-Gilford Progeria Syndrome (HGPS or progeria) is a rare genetic disease that causes young children to develop symptoms associated with advanced age, such as baldness, wrinkles, osteoporosis and cardiovascular disease. ...

Recommended for you

Mutation may cause early loss of sperm supply

29 minutes ago

Brown University biologists have determined how the loss of a gene in male mice results in the premature exhaustion of their fertility. Their fundamental new insights into the complex process of sperm generation ...

No more bleeding for 'iron overload' patients?

2 hours ago

Hemochromatosis (HH) is the most common genetic disorder in the western world, and yet is barely known. Only in the US 1 in 9 people carry the mutation (although not necessarily the disease).

3-D printing offers innovative method to deliver medication

7 hours ago

3-D printing could become a powerful tool in customizing interventional radiology treatments to individual patient needs, with clinicians having the ability to construct devices to a specific size and shape. That's according ...

Mystery of the reverse-wired eyeball solved

Feb 27, 2015

From a practical standpoint, the wiring of the human eye - a product of our evolutionary baggage - doesn't make a lot of sense. In vertebrates, photoreceptors are located behind the neurons in the back of the eye - resulting ...

Neurons controlling appetite made from skin cells

Feb 27, 2015

Researchers have for the first time successfully converted adult human skin cells into neurons of the type that regulate appetite, providing a patient-specific model for studying the neurophysiology of weight ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.