In Brief: Ultrafast transparency in a plasmonic nanorod

January 25, 2011
The plasmonic gold nanorod material is shown on the left, and modeling of the isolated and coupled plasmonic field is shown on the right. The delocalized nature of the plasmonic field is evident.

Users from the University of North Florida and King's College London collaborated with Argonne scientists in the Nanophotonics Group to show that closely spaced plasmonic gold nanorods produce an ultrafast transmission change when illuminated with a low-energy optical pulse.

The ultrafast switching behavior is due to strong coupling between the nanorod , which are collective free-electron responses of metals that are driven by the incident light.

The key discovery is that the closely spaced nanorod material exhibits nonlocality of the optical response, which has an unusually strong nonlinear dependence on incident light intensity.

These materials belong to a new class of “metamaterials” – those with optical properties and responses that do not occur naturally.

Electromagnetic modeling by Univversity of Massachusetts collaborators confirms the nonlocal response of the plasmonic metamaterial.

Explore further: IMEC reports method to integrate plasmonic technology with state-of-the-art ICs

More information: G. A. Wurtz et al., Nature Nanotechnology, in press (2011).

Related Stories

Plasmonics: From metallic foils to cancer treatment

January 11, 2011

In a timely review paper, scientists from Japan, Germany, and Spain provide a highly relevant overview of the history, physical interpretation and applications of plasmons in metallic nanostructures.

Recommended for you

Meet the high-performance single-molecule diode

July 29, 2015

A team of researchers from Berkeley Lab and Columbia University has passed a major milestone in molecular electronics with the creation of the world's highest-performance single-molecule diode. Working at Berkeley Lab's Molecular ...

Reshaping the solar spectrum to turn light to electricity

July 28, 2015

When it comes to installing solar cells, labor cost and the cost of the land to house them constitute the bulk of the expense. The solar cells—made often of silicon or cadmium telluride—rarely cost more than 20 percent ...

Could stronger, tougher paper replace metal?

July 24, 2015

Researchers at the University of Maryland recently discovered that paper made of cellulose fibers is tougher and stronger the smaller the fibers get. For a long time, engineers have sought a material that is both strong (resistant ...

Wafer-thin material heralds future of wearable technology

July 27, 2015

UOW's Institute for Superconducting and Electronic Materials (ISEM) has successfully pioneered a way to construct a flexible, foldable and lightweight energy storage device that provides the building blocks for next-generation ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.