In Brief: Ultrafast transparency in a plasmonic nanorod

Jan 25, 2011
The plasmonic gold nanorod material is shown on the left, and modeling of the isolated and coupled plasmonic field is shown on the right. The delocalized nature of the plasmonic field is evident.

Users from the University of North Florida and King's College London collaborated with Argonne scientists in the Nanophotonics Group to show that closely spaced plasmonic gold nanorods produce an ultrafast transmission change when illuminated with a low-energy optical pulse.

The ultrafast switching behavior is due to strong coupling between the nanorod , which are collective free-electron responses of metals that are driven by the incident light.

The key discovery is that the closely spaced nanorod material exhibits nonlocality of the optical response, which has an unusually strong nonlinear dependence on incident light intensity.

These materials belong to a new class of “metamaterials” – those with optical properties and responses that do not occur naturally.

Electromagnetic modeling by Univversity of Massachusetts collaborators confirms the nonlocal response of the plasmonic metamaterial.

Explore further: Pinpoint laser heating creates a maelstrom of magnetic nanotextures

More information: G. A. Wurtz et al., Nature Nanotechnology, in press (2011).

add to favorites email to friend print save as pdf

Related Stories

Plasmonics: From metallic foils to cancer treatment

Jan 11, 2011

In a timely review paper, scientists from Japan, Germany, and Spain provide a highly relevant overview of the history, physical interpretation and applications of plasmons in metallic nanostructures.

Recommended for you

Chemically driven micro- and nanomotors

Dec 17, 2014

At least since the movie "The Fantastic Voyage" in 1966, in which a submarine is shrunk down and injected into the blood stream of a human, people have been toying with the idea of sending tiny "micromachines" ...

Pyramid nanoscale antennas beam light up and down

Dec 17, 2014

Researchers from FOM Institute AMOLF and Philips Research have designed and fabricated a new type of nanoscale antenna. The new antennas look like pyramids, rather than the more commonly used straight pillars. ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.