A mix of tiny gold and viral particles -- and the DNA ties that bind them

Jan 27, 2011
A mix of tiny gold and viral particles -- and the DNA ties that bind them
Crystal lattice created by Sung Yong Park and colleagues (Illustration by Adolf Lachman)

Scientists have created a diamond-like lattice composed of gold nanoparticles and viral particles, woven together and held in place by strands of DNA. The structure – a distinctive mix of hard, metallic nanoparticles and organic viral pieces known as capsids, linked by the very stuff of life, DNA – marks a remarkable step in scientists' ability to combine an assortment of materials to create infinitesimal devices.

The research, done by scientists at the University of Rochester Medical Center, Scripps Research Institute, and Massachusetts Institute of Technology, was published recently in Nature Materials.

While people commonly think of as a blueprint for life, the team used DNA instead as a tool to guide the precise positioning of tiny particles just one-millionth of a centimeter across, using DNA to chaperone the particles.

Central to the work is the unique attraction of each of DNA's four chemical bases to just one other base. The scientists created specific pieces of DNA and then attached them to gold nanoparticles and viral particles, choosing the sequences and positioning them exactly to force the particles to arrange themselves into a crystal lattice.

When scientists mixed the particles, out of the brew emerged a sodium thallium crystal lattice. The device "self assembled" or literally built itself.

The research adds some welcome flexibility to the toolkit that scientists have available to create nano-sized devices.

"Organic materials interact in ways very different from metal nanoparticles. The fact that we were able to make such different materials work together and be compatible in a single structure demonstrates some new opportunities for building nano-sized devices," said Sung Yong Park, Ph.D., a research assistant professor of Biostatistics and Computational Biology at Rochester.

Park and M.G Finn, Ph.D., of Scripps Research Institute are corresponding authors of the paper.

Such a crystal lattice is potentially a central ingredient to a device known as a photonic crystal, which can manipulate light very precisely, blocking certain colors or wavelengths of light while letting other colors pass. While 3-D photonic crystals exist that can bend light at longer wavelengths, such as the infrared, this lattice is capable of manipulating visible light. Scientists foresee many applications for such crystals, such as optical computing and telecommunications, but manufacturing and durability remain serious challenges.

It was three years ago that Park, as part of a larger team of colleagues at Northwestern University, first produced a crystal lattice with a similar method, using DNA to link gold nanospheres. The new work is the first to combine particles with such different properties – hard gold and more flexible organic particles.

Within the new structure, there are actually two distinct forces at work, Park said. The particles and the repel each other, but their deterrence is countered by the attraction between the strategically placed complementary strands of DNA. Both phenomena play a role in creating the rigid . It's a little bit like how countering forces keep our curtains up: A spring in a curtain rod pushes the rod to lengthen, while brackets on the window frame counter that force, creating a taut, rigid device.

Explore further: Graphene surfaces on photonic racetracks

More information: www.nature.com/nmat/index.html

Related Stories

Biology rides to computers' aid

Oct 19, 2010

Photonic crystals are exotic materials with the ability to guide light beams through confined spaces and could be vital components of low-power computer chips that use light instead of electricity. Cost-effective ...

Gold nanoparticles for controlled drug delivery

Dec 30, 2008

(PhysOrg.com) -- Using tiny gold particles and infrared light, MIT researchers have developed a drug-delivery system that allows multiple drugs to be released in a controlled fashion.

DNA can act like Velcro for nanoparticles

Nov 18, 2010

DNA can do more than direct how bodies our made -- it can also direct the composition of many kinds of materials, according to a new study from the U.S. Department of Energy’s Argonne National Laboratory.

Recommended for you

Graphene surfaces on photonic racetracks

11 hours ago

In an article published in Optics Express, scientists from The University of Manchester describe how graphene can be wrapped around a silicon wire, or waveguide, and modify the transmission of light through it.

Simulating the invisible

11 hours ago

Panagiotis Grammatikopoulos in the OIST Nanoparticles by Design Unit simulates the interactions of particles that are too small to see, and too complicated to visualize. In order to study the particles' behavior, he uses ...

Building 'invisible' materials with light

12 hours ago

A new method of building materials using light, developed by researchers at the University of Cambridge, could one day enable technologies that are often considered the realm of science fiction, such as invisibility ...

User comments : 0