New technique to see neurons of the deep brain for months at a time developed

Jan 16, 2011
This is a diagram of the experimental setup. (left) Tiny optical instruments called microendoscopes are inserted into glass imaging guide tubes, which maintain a precise position in the brain. This allows researchers to view the exact same neuron with a microscope (right) again and again, a new technique for brain researchers. Scientists can also compare diseased tissue, such as a tumor, to healthy tissue in the same animal. Credit: Modified image courtesy Mark Schnitzer and Nature Medicine.

Travel just one millimeter inside the brain and you'll be stepping into the dark.

Standard light microscopes don't allow researchers to look into the interior of the living brain, where memories are formed and diseases such as and cancer can take their toll.

But Stanford scientists have devised a new method that not only lets them peer deep inside the brain to examine its neurons but also allows them to continue monitoring for months.

The technique promises to improve understanding of both the normal biology and diseased states of this hidden tissue.

Other recent advances in micro-optics had enabled scientists to take a peek at cells of the deep brain, but their observations captured only a momentary snapshot of the microscopic changes that occur over months and years with aging and illness.

The Stanford development appears online Jan. 16 in the journal Nature Medicine. It also will appear in the February 2011 print edition.

This video is not supported by your browser at this time.
Stanford researchers have developed a new technique that allows them to monitor the tiny branches of neurons in a live brain for months at a time. Neuroscientists will now be able to monitor the microscopic changes that occur over the course of progressive brain disease. Credit: Jack Hubbard, Stanford University News Service

Scientists study many diseases of the deep brain using mouse models, mice that have been bred or genetically engineered to have diseases similar to human afflictions.

"Researchers will now be able to study mouse models in these deep areas in a way that wasn't available before," said senior author Mark Schnitzer, associate professor of biology and of applied physics.

Because can only penetrate the outermost layer of tissues, any region of the brain deeper than 700 microns or so (about 1/32 of an inch) cannot be reached by traditional microscopy techniques. Recent advances in micro-optics had allowed scientists to briefly peer deeper into living tissues, but it was nearly impossible to return to the same location of the brain and it was very likely that the tissue of interest would become damaged or infected.

With the new method, "Imaging is possible over a very long time without damaging the region of interest," said Juergen Jung, operations manager of the Schnitzer lab. Tiny glass tubes, about half the width of a grain of rice, are carefully placed in the deep brain of an anaesthetized mouse. Once the tubes are in place, the brain is not exposed to the outside environment, thus preventing infection. When researchers want to examine the cells and their interactions at this site, they insert a tiny optical instrument called a microendoscope inside the glass guide tube. The guide tubes have glass windows at the ends through which scientists can examine the interior of the brain.

"It's a bit like looking through a porthole in a submarine," said Schnitzer.

The guide tubes allow researchers to return to exactly the same location of the deep brain repeatedly over weeks or months. While techniques like MRI scans could examine the deep brain, "they couldn't look at individual cells on a microscopic scale," said Schnitzer. Now, the delicate branches of can be monitored during prolonged experiments.

To test the use of the technique for investigating brain disease, the researchers looked at a of glioma, a deadly form of brain cancer. They saw hallmarks of glioma growth in the deep brain that were previously known in tumors described as surficial (on or near the surface).

The severity of glioma tumors depends on their location. "The most aggressive brain tumors arise deep and not superficially," said Lawrence Recht, professor of neurology and neurological sciences. Why the position of glioma tumors affects their growth rate isn't understood, but this method would be a way to explore that question, Recht said.

In addition to continuing their studies of brain disease and the neuroscience of memory, the researchers hope to teach other researchers how to perform the technique.

Explore further: Research milestone in CCHF virus could help identify new treatments

Related Stories

Microscopic brain imaging method developed

Aug 25, 2005

Stanford University scientists have demonstrated a minimally invasive optical technique to capture micron-scale images from the brains of live subjects.

Tumor-killing virus selectively targets diseased brain cells

Feb 19, 2008

New findings show that a specialized virus with the ability to reproduce its tumor-killing genes can selectively target tumors in the brains of mice and eliminate them. Healthy brain tissue remained virtually untouched, according ...

'Gateway' gene discovered for brain cancer

Feb 14, 2007

Researchers have discovered that the same genetic regulator that triggers growth of stem cells during brain development also plays a central role in the development of the lethal brain cancer malignant glioma. In experiments ...

Brain tumor vaccine has promising results

Nov 22, 2006

U.S. cancer researchers say a vaccine for treating a recurrent brain cancer known as glioma has shown promising results in preliminary clinical trials.

Recommended for you

A better way to track emerging cell therapies using MRIs

5 hours ago

Cellular therapeutics – using intact cells to treat and cure disease – is a hugely promising new approach in medicine but it is hindered by the inability of doctors and scientists to effectively track the movements, destination ...

New biomedical implants accelerate bone healing

12 hours ago

A major success in developing new biomedical implants with the ability to accelerate bone healing has been reported by a group of scientists from the Department of Restorative Dentistry, University of Malaya. ...

User comments : 3

Adjust slider to filter visible comments by rank

Display comments: newest first

BillFox
2 / 5 (4) Jan 16, 2011
Lol so now its called a breakthrough to put a straw through a skull, how ingenious!
TabulaMentis
2 / 5 (2) Jan 16, 2011
Lol so now its called a breakthrough to put a straw through a skull, how ingenious!
Though not ideal by a long shot, this research could possibly be used to record brain signals over a very long period of time as a crude form of immortality. It is better than nothing and will for sure lead to bigger and better things in the future.
mattbroderick
not rated yet Jan 17, 2011
This is pretty cool! Combine this with an electrode and we could have both long-term imaging and neuronal spike or field potential data.