Engineering team invents lab-on-a-chip for fast, inexpensive blood tests

Jan 10, 2011

While most blood tests require shipping a vial of blood to a laboratory for analysis and waiting several days for the results, a new device invented by a team of engineers and students at the University of Rhode Island uses just a pinprick of blood in a portable device that provides results in less than 30 minutes.

"This development is a big step in point-of-care diagnostics, where testing can be performed in a clinic, in a doctor's office, or right at home," said Mohammad Faghri, URI professor of mechanical engineering and the lead researcher on the project. "No longer will patients have to wait anxiously for several days for their test results. They can have their blood tested when they walk into the doctor's office and the results will be ready before they leave."

With the new lab-on-a-chip technology, a drop of blood is placed on a cartridge smaller than a credit card and inserted into a shoebox-sized containing a miniature spectrometer and piezoelectric micro-pump. The blood travels through the cartridge in tiny channels 500 microns wide to a detection site where it reacts with preloaded reagents enabling the sensor to detect certain of disease.

Several patents are pending on the invention.

Compared to similar devices in development elsewhere, the URI system is much smaller, more portable, requires a smaller , and is less expensive. While the sensor costs about $3,200, each test costs just $1.50, which is the cost for the plastic cartridge and .

The first cartridges the researchers developed focus on the detection of C-reactive proteins (CRP) in the blood, a preferred method for helping doctors assess the risk of cardiovascular and peripheral vascular diseases. From 2002 to 2004 (the only years for which data are available), the number of CRP tests paid for by Medicare tripled from 145,000 to 454,000, and it is estimated that those numbers have quadrupled since then.

Faghri said that additional cartridges can be designed to detect biomarkers of other diseases. The researchers are already working to engineer the device to detect levels of the beta amyloid protein that can be used as a predictor of Alzheimer's disease. The device can also be engineered to detect virulent pathogens, including HIV, hepatitis B and H1N1 (swine) flu.

The next generation of the device will incorporate a hand-held sensor that will reduce manufacturing costs. Faghri also envisions a further miniaturization of the invention that can be adapted as a smartphone application. By embedding the biosensor in the cartridge and using the computer power of the phone, as well as its wireless communication capabilities, Faghri believes that patients may be able to conduct the tests themselves and have the results transmitted immediately to their doctor's office via their phone. Among many other benefits, this should help to significantly reduce health care costs.

"We are already making progress on many of the steps toward the next generation of the system, and it won't be long before we can begin to commercialize it," Faghri said.

Explore further: Haunting tales in ship-wrecked silver

Related Stories

Rapid DNA Detection Quickly Diagnoses Infections

Oct 05, 2009

(PhysOrg.com) -- A new portable device can detect bacteria and help prevent the spread of infectious diseases. This new tool takes from 15 minutes to 2 hours to diagnose a patient for infectious diseases and ...

Gene Testing In the Doctors Office

Dec 02, 2009

(PhysOrg.com) -- A portable instrument manufactured by Nanosphere Inc. and recently approved by the FDA, can detect genetic variations in blood that alter the effectiveness of some drugs.

Researcher micro-sizes genetics testing

Sep 19, 2008

Using new "lab on a chip" technology, James Landers hopes to create a hand-held device that may eventually allow physicians, crime scene investigators, pharmacists, even the general public to quickly and inexpensively ...

PANTHER sensor quickly detects pathogens

Mar 04, 2008

Researchers at MIT Lincoln Laboratory have developed a powerful sensor that can detect airborne pathogens such as anthrax and smallpox in less than three minutes.

A medical micropump

Nov 13, 2006

Using material similar to bathtub caulk, University of Utah engineers invented a tiny, inexpensive "micropump" that could be used to move chemicals, blood or other samples through a card-sized medical laboratory ...

Recommended for you

New material steals oxygen from the air

2 hours ago

Researchers from the University of Southern Denmark have synthesized crystalline materials that can bind and store oxygen in high concentrations. Just one spoon of the substance is enough to absorb all the ...

Driving cancer cells to suicide

3 hours ago

Ludwig Maximilian University of Munich researchers report that a new class of chemical compounds makes cancer cells more sensitive to chemotherapeutic drugs. They have also pinpointed the relevant target ...

Neutral self-assembling peptide hydrogel

6 hours ago

Self-assembling peptides are characterized by a stable β-sheet structure and are known to undergo self-assembly into nanofibers that could further form a hydrogel. Self-assembling peptide hydrogels have ...

User comments : 0