Trapped sunlight cleans water

Jan 11, 2011

High energy costs are one drawback of making clean water from waste effluents. According to an article in the journal Biomicrofluidics, which is published by the American Institute of Physics, a new system that combines two different technologies proposes to break down contaminants using the cheapest possible energy source, sunlight. Microfluidics – transporting water through tiny channels -- and photocatalysis -- using light to break down impurities – come together in the science of optofluidics.

"These two technologies have been developed in parallel but there have been few efforts to employ the natural synergy between them," says author Xuming Zhang of the Hong Kong Polytechnic University. "Our results showed a dramatic improvement in the efficiency of the photocatalyst."

The researchers fabricated a planar microfluidic reactor, or microreactor, which is essentially a rectangular chamber made of two glass plates coated with titanium dioxide, the active ingredient in many sunscreen lotions. On exposure to , the coating releases electrons that react with contaminants in the water and break them down into harmless substances. This is the photocatalysis part of the process. The high surface area of the microreactor enhances the ability of the catalyst to capture sunlight.

Although the gap between plates is small, Zhang plans to expand the rectangular dimensions to two square meters. "Our current small-scale proves the concept but we are also scaling up the reactor to a throughput of 1,000 liter per hour," he says. If the larger reactor proves effective, many parallel devices might be used to handle industrial treatment applications.

Explore further: First direct evidence that a mysterious phase of matter competes with high-temperature superconductivity

More information: The article, "Optofluidic planar reactors for photocatalytic water treatment using solar energy" by Lei Lei, Ning Wang, Xuming Zhang, Qidong Tai, Din Ping Tsai, and Helen L. Chan appears in the journal Biomicrofluidics. See: link.aip.org/link/biomgb/v4/i4/p043004/s1

Provided by American Institute of Physics

4 /5 (1 vote)
add to favorites email to friend print save as pdf

Related Stories

Sunlight turns carbon dioxide to methane

Mar 05, 2009

Dual catalysts may be the key to efficiently turning carbon dioxide and water vapor into methane and other hydrocarbons using titania nanotubes and solar power, according to Penn State researchers.

MIT researchers harness the sun's power

May 12, 2010

For decades, scientists have been trying to replicate the process of photosynthesis -- the process by which plants convert sunlight into energy. The Economist reports that Angela Belcher and her colleagues at the Massachusetts ...

Recommended for you

Yellowstone's thermal springs—their colors unveiled

Dec 19, 2014

Researchers at Montana State University and Brandenburg University of Applied Sciences in Germany have created a simple mathematical model based on optical measurements that explains the stunning colors of ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

Graeme
not rated yet Jan 11, 2011
They could also use mirrors to focus the sunlight, so that less of the active surface is needed.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.