Sequenced genomes make good neighbors

January 10, 2011
Protein identifications from Columbia River isolates are mapped to the reference genomes of S. oneidensis MR-1 (A) and S. putrefaciens CN32 (B). While all organisms were grown under the same conditions, observation of no protein expression compared to the reference proteome reveals these organisms have undergone evolutionary divergence. The protein identifications for each of the Shewanella species mapped onto their respective genomes, as well as the protein orthologs across species, also are shown. Two regions of "missing" proteome information from the Hanford Reach isolates are highlighted.

( -- To study the proteomes of organisms, a first step often involves using sequenced genomes in conjunction with mass spectrometric measurements for global protein identifications. But, how do you identify the proteins in an organism yet to be sequenced? One way is to look at its sequenced neighbors, which is what scientists at Pacific Northwest National Laboratory (PNNL) did. They demonstrated a trans-organism search strategy for determining the extent to which near-neighbor genome sequences can be effective for global protein identifications in unsequenced organisms isolated from environmental samples.

In this strategy, mass spectra from an unsequenced organism were searched against the sequences for progressively more genetically distant neighbor organisms to determine how much proteome information could be obtained about one species when using the genomic sequence of another. The work appeared in in November 2010.

The ability to identify the proteins in an organism provides scientists with information about an organism's physiological status, insights into gene function, and indicates which genes are activated and translated into functional proteins as organisms and develop or respond to environmental cues.

Such information is important in developing a predictive understanding of relevant to energy production, environmental remediation, and climate change mitigation. However, despite the development of increasingly high-throughput sequencing technologies, sequenced genomes for every microorganism, particularly microbial communities, are not available.

The scientific team, led by PNNL scientists Dr. Mary Lipton and Dr. Stephen Callister, selected multiple genome sequences for Shewanellae to test the concept, not only because of the large number of publicly available genome sequences for this genus, but also the potential environmental importance of Shewanella organisms. They also included sequences from two other bacteria, Deinococcus radiodurans R1 and Salmonella typhimurium LT2, both distantly related (based upon 16s rDNA genes) to Shewanellae.

The team identified 300-500 proteins in four uncharacterized Shewanellae isolated from sediments sampled along the Hanford Reach of the Columbia River in Washington state and demonstrated an empirical relationship between the numbers of proteins identified. They did this using a neighboring sequenced genome to interpret mass spectrometric data and determine how closely related the sequenced organism was to the uncharacterized Shewanella organisms anticipated to be present in the sediments.

The range of identified proteins revealed that while a near-neighbor organism strategy can provide information for characterizing the proteomes of environmental isolates, selection of the near-neighbor organism is important because even organisms within the same genus can yield varying results. With careful selection of a closely related near neighbor, the application of this strategy potentially is useful for proteomics screening of environmental isolates.

Dr. Lipton and Dr. Callister are applying this strategy to study proteomes of microbial communities for which metagenomic information is not available.

Explore further: DOE unveils experimental metagenomics data

More information: Turse JE, MJ Marshall, JK Fredrickson, MS Lipton, and SJ Callister. 2010. "An empirical strategy for characterizing bacterial proteomes across species in the absence of genomic sequences." PLoS ONE 5(11):e13968. DOI: 10.1371/journal.pone.0013968

Related Stories

Bacteria Are Better Gene Packers Than We Thought

February 12, 2010

( -- In microbial genomes, genes are typically depicted as linear series of separate regulatory and coding regions. This leads to the assumption that annotations done by computer to predict such arrangements completely ...

Recommended for you

New gene map reveals cancer's Achilles heel

November 25, 2015

Scientists have mapped out the genes that keep our cells alive, creating a long-awaited foothold for understanding how our genome works and which genes are crucial in disease like cancer.

Insect DNA extracted, sequenced from black widow spider web

November 25, 2015

Scientists extracted DNA from spider webs to identify the web's spider architect and the prey that crossed it, according to this proof-of-concept study published November 25, 2015 in the open-access journal PLOS ONE by Charles ...

How cells in the developing ear 'practice' hearing

November 25, 2015

Before the fluid of the middle ear drains and sound waves penetrate for the first time, the inner ear cells of newborn rodents practice for their big debut. Researchers at Johns Hopkins report they have figured out the molecular ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.