Scientists now know why some cancers become malignant and others don't

Jan 06, 2011

Cancer cells reproduce by dividing in two, but a molecule known as PML limits how many times this can happen, according to researchers lead by Dr. Gerardo Ferbeyre of the University of Montreal's Department of Biochemistry. The team proved that malignant cancers have problems with this molecule, meaning that in its absence they can continue to grow and eventually spread to other organs. Importantly, the presence of PML molecules can easily be detected, and could serve to diagnose whether a tumor is malignant or not.

"We discovered that benign cancer cells produce the PML molecule and display abundant PML bodies, keeping them in a dormant, state. Malignant cancer cells either don't make or fail to organize PML bodies, and thus proliferate uncontrollably," Ferbeyre explained. Senescence is the mature stage in a cell's life at which in can no longer reproduce and it is a natural defense against . When are benign, it means that they cannot spread or grow into other parts of the body.

The team of researchers based both on campus and at the University of Montreal Hospital Research Centre built on Dr. Ferbeyre's prior discovery that PML is able to force cells to enter senescence. However, for the past ten years, the mechanism by which this was achieved remained mostly unknown. Hospital researchers worked with patients to collect samples that enabled the team to make their discovery.

"Our findings unravel the unexpected ability of PML to organize a network of tumor suppressor proteins to repress the expression or the amount of other proteins required for ," explained researcher Véronique Bourdeau. Such proteins are essential in our body that play a key role in controlling the birth, growth and death of cells. Researcher Mathieu Vernier emphasized that "this is an important finding with implications for our understanding on how the normal organism defends itself from the threat of cancer."

The work offers exciting avenues for future research. "Our discovery opens new possibilities to explore what other molecules are involved in generating senescence: a goal we consider important if we want to design therapies that turn malignant tumors into benign tumors," Ferbeyre said. The research was published on January 1, 2011 in Genes and Development, and received funding from the Canadian Cancer Society and by the Fonds de la recherche en Santé du Québec.

Explore further: Pancreatic cancer risk not higher with diabetes Rx DPP-4i

Related Stories

Selective inhibition of BMK1 suppresses tumor growth

Sep 13, 2010

A study describing a newly developed pharmacological inhibitor is providing detailed insight into how an enzyme that has been implicated in multiple human malignancies regulates a known tumor suppressor. The research, published ...

Scientists identify natural anti-cancer defenses

Dec 11, 2009

Canadian researchers have discovered a novel molecular mechanism that prevents cancer. In the December 11 edition of the prestigious journal Molecular Cell, scientists from the Université de Montréal and th ...

Recommended for you

Pancreatic cancer risk not higher with diabetes Rx DPP-4i

27 minutes ago

(HealthDay)—There is no increased short-term pancreatic cancer risk with dipeptidyl-peptidase-4 inhibitors (DPP-4i) compared to sulfonylureas (SU) and thiazolidinediones (TZD) for glycemic control, according ...

Good bowel cleansing is key for high-quality colonoscopy

2 hours ago

The success of a colonoscopy is closely linked to good bowel preparation, with poor bowel prep often resulting in missed precancerous lesions, according to new consensus guidelines released by the U.S. Multi-Society Task ...

New rules for anticancer vaccines

4 hours ago

Scientists have found a way to find the proverbial needle in the cancer antigen haystack, according to a report published in The Journal of Experimental Medicine.

Mesothelioma risk endures over long-term

5 hours ago

Western Australian researchers have determined the risk of developing mesothelioma continues to increase even 40 years after a person's first exposure to asbestos.

User comments : 0