Prototype drug targets metabolism, halts disease that limits bone marrow transplantation

Jan 26, 2011

(PhysOrg.com) -- A prototype drug already shown to hold promise for treating autoimmune disorders like lupus, arthritis and psoriasis halts established graft-versus-host disease (GVHD) in mouse models of bone marrow transplantation, research at the University of Michigan and the University of Florida shows.

The research, published in the Jan. 26 issue of Science Translational Medicine, also offers new insights into how the cells that cause GVHD and other immune disorders make adenosine-5'-triphosphate (ATP), the fuel cells use to survive and carry out their prescribed functions. These findings challenge a long-standing model of how activated cells of the immune system make ATP, opening the door for fundamentally new approaches to combat immune diseases.

Bone marrow is the soft tissue that helps form blood cells, including the white cells that fight disease and infection. Bone marrow transplantation is a life-saving procedure used to treat diseases once thought incurable, including leukemia, aplastic anemia, Hodgkin's disease, multiple myeloma, immune deficiency disorders, and some solid tumors. During what's known as allogeneic bone marrow transplantation, healthy bone marrow stem cells from a donor are transfused into a patient, replacing marrow that is either not working properly or has been destroyed by chemotherapy or radiation.

The new donor bone marrow must precisely match the genetic makeup of the patient's own marrow. If the donor's bone marrow is not perfectly matched, as is often the case, it can perceive the patient's body as foreign material to be attacked and destroyed. This condition, known as GVHD, is often life-threatening and greatly limits the use of allogeneic bone marrow transplantation.

Currently, allogeneic bone marrow transplant recipients are given drugs that suppress the immune system in order to lessen the effects of GVHD. In many cases, these drugs are simply ineffective at preventing or treating GVHD. They also cause serious side effects, such as lowering a person's resistance to infection and making infections more difficult to treat.

In the new work, a research team led by U-M faculty members Gary Glick and James Ferrara tested a compound called Bz-423 in several mouse models of bone marrow transplantation. A chemical cousin of anti-anxiety medications such as Valium and Xanax, Bz-423 sets off a chain of events that results in a type of cell death called apoptosis in donor T-cells, the immune cells that cause GVHD.

"We've been working on the chemistry and biology of Bz-423 for several years, and have identified what it binds to and how it works in cells, said Glick, who is the Werner E. Bachmann Collegiate Professor of Chemistry and a professor of biological chemistry. "Bz-423 controls an enzyme involved in metabolism, and because our previous work with lupus showed that the compound targets disease-causing cells without harming normal cells, that led us to believe there may be differences in metabolism between normal and disease-causing immune cells."

The researchers turned their attention to GVHD because it's an important medical problem and also because in animal models, disease-causing cells can easily be distinguished from normal cells. As suspected, they found that the rogue T cells involved in GVHD do differ metabolically from normal white blood cells.

"Cells make energy through one of two processes: glycolysis or oxidative phosphorylation," Glick said. "Others have shown that normal T cells, which are important for fighting bacteria and viruses, use glycolysis. However, we found that disease-causing T cells use oxidative phosphorylation." In addition, the aberrant T cells have reduced levels of antioxidants.

"This combination of decreased antioxidants and oxidative phosphorylation seems to be a unique property of pathogenic T cells, compared to normal white blood cells, heart cells, brain cells and other body cells," Glick said. The unusual metabolic profile of troublemaking T cells provides the basis for selective targeting by drugs like Bz-423 that modulate metabolism.

"Bz-423 provides a much higher level of selectivity for silencing disease-causing cells than is seen with the immunosuppressive drugs typically used for diseases like GVHD," Glick said. In the experiments described in the paper, Bz-423 arrested GVHD in mice by selectively killing disease-causing T cells, with no adverse effects on normal cells or bone marrow transplant success.

"Now that we've made these observations about the role of metabolism in immunology, particularly as it relates to disease, there's much more work to be done to learn why these differences occur in diseased cells," Glick said. "Understanding that should reveal other ways to intervene therapeutically."

Research on compounds with similar properties to Bz-423 is ongoing at Lycera Corp., a Plymouth, Michigan-based company that Glick and U-M associate professor of obstetrics and gynecology Anthony Opipari founded in 2006.

"Lycera is moving toward clinical trials with molecules that control the same cellular enzyme as Bz-423, but that have better drug like properties, including oral bioavailability," Glick said.

Explore further: Novel marker discovered for stem cells derived from human umbilical cord blood

More information: Science Translational Medicine stm.sciencemag.org/

Provided by University of Michigan

not rated yet
add to favorites email to friend print save as pdf

Related Stories

Blood test could improve graft-versus-host disease treatment

Jan 08, 2010

University of Michigan researchers have identified the first biomarker of graft-versus-host disease of the skin. The discovery makes possible a simple blood test that should solve a treatment dilemma facing doctors with patients ...

Recommended for you

Leeches help save woman's ear after pit bull mauling

11 hours ago

(HealthDay)—A pit bull attack in July 2013 left a 19-year-old woman with her left ear ripped from her head, leaving an open wound. After preserving the ear, the surgical team started with a reconnection ...

New pain relief targets discovered

22 hours ago

Scientists have identified new pain relief targets that could be used to provide relief from chemotherapy-induced pain. BBSRC-funded researchers at King's College London made the discovery when researching ...

User comments : 0

More news stories

LinkedIn membership hits 300 million

The career-focused social network LinkedIn announced Friday it has 300 million members, with more than half the total outside the United States.

Magnitude-7.2 earthquake shakes Mexican capital

A powerful magnitude-7.2 earthquake shook central and southern Mexico on Friday, sending panicked people into the streets. Some walls cracked and fell, but there were no reports of major damage or casualties.

Sun emits a mid-level solar flare

The sun emitted a mid-level solar flare, peaking at 9:03 a.m. EDT on April 18, 2014, and NASA's Solar Dynamics Observatory captured images of the event. Solar flares are powerful bursts of radiation. Harmful ...