Researchers 'recalculate' efficiency paradigm for thin film solar panels

January 10, 2011

In recent years, developers have been investigating light-harvesting thin film solar panels made from nanotechnology -- and promoting efficiency metrics to make the technology marketable. Now a Tel Aviv University researcher is providing new evidence to challenge recent "charge" measurements for increasing solar panel efficiency.

Offering a less expensive, smaller solution than traditional panels, Prof. Eran Rabani of Tel Aviv University's School of Chemistry at the Raymond and Beverly Sackler Faculty of Exact Sciences puts a lid on some current hype that promises to increase efficiencies in thin film panels. His research, published recently in the journals Nano Letters and Chemical Physics Letters, may bring the development of new solar energy technologies more down to earth.

Prof. Rabani combines a new theoretical approach with . "Our theory shows that current predictions to increase efficiencies won't work. The increase in efficiencies cannot be achieved yet through Multiexciton Generation, a process by which several charge carriers (electrons and holes) are generated from one photon," he says.

Inefficient as "charged"

But both new and existing theories bode well for the development of other strategies in future solar energy technology, he points out. Newer approaches published in journals such as Science may provide means for increasing the efficiencies of , and perhaps would also be useful in storage of solar energy, Prof. Rabani and his team of researchers believe.

A chemical physicist, Prof. Rabani investigates how to separate charges from the sun efficiently. In 2004, physicists suggested that more than one electron-hole pair could be pulled from one photon in a complicated process in . If this were possible, the charge would be doubled, and so the solar energy efficiency would increase. "We've shown that this idea doesn't work," Prof. Rabani says.

One step closer to marketing the sun

The development of more efficient and less expensive devices to make use of is one of the greatest challenges in science today. Billions of dollars are being spent to find the best methods to collect electron "charges" from the sun.

Typically, one photon from the sun absorbed in a thin film solar panel can excite one electron-hole pair, which is then converted to electricity. Currently there are claims that if more electron-hole pairs can be excited after the photon is absorbed, a larger fraction of the photon energy can successfully be converted into electricity, thus increasing device efficiency.

The theory that Prof. Rabani developed with his Israeli colleagues shows why this process is not as efficient as originally conceived. It's bad news for panel producers looking to create more efficient , but good news for researchers who are now free to look to the next realistic step for developing a technology that works.

Explore further: Greatly Improved Solar Cells

Related Stories

Greatly Improved Solar Cells

April 21, 2004

Victor Klimov and Richard Schaller at Los Alamos National Laboratory have enhanced the phenomenon called "impact ionization," which can significantly improve the efficiency of the conversion of solar energy to electrical ...

Desert power: A solar renaissance

April 1, 2008

What does the future hold for solar power? “Geotimes” magazine looks into more efficient ways of turning the sun’s power into electricity in its April cover story, “Desert Power: A Solar Renaissance.”

Quantum Dots Could Boost Solar Cell Efficiency

March 11, 2009

(PhysOrg.com) -- The transition to environmentally benign energy sources is one of the most significant challenges of the 21st century. Solar power, which uses sunlight to generate electricity, is one promising source. It ...

Hot Electrons Could Double Solar Cell Power Efficiency

December 18, 2009

Scientists have experimentally verified a theory suggesting that hot electrons could double the output of solar cells. The researchers, from Boston College, have built solar cells that successfully use hot electrons to increase ...

Recommended for you

An engineered surface unsticks sticky water droplets

August 31, 2015

The leaves of the lotus flower, and other natural surfaces that repel water and dirt, have been the model for many types of engineered liquid-repelling surfaces. As slippery as these surfaces are, however, tiny water droplets ...

Electrical circuit made of gel can repair itself

August 25, 2015

(Phys.org)—Scientists have fabricated a flexible electrical circuit that, when cut into two pieces, can repair itself and fully restore its original conductivity. The circuit is made of a new gel that possesses a combination ...

Scientists grow high-quality graphene from tea tree extract

August 21, 2015

(Phys.org)—Graphene has been grown from materials as diverse as plastic, cockroaches, Girl Scout cookies, and dog feces, and can theoretically be grown from any carbon source. However, scientists are still looking for a ...

4 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

jscroft
1.7 / 5 (6) Jan 10, 2011
Overblown claims in favor of "green" technologies? Come ON! Prof. Rabani is obviously a denier. Probably a racist sexist homophobe, too. Not to mention a closeted Teabagger.
gmurphy
4.3 / 5 (6) Jan 10, 2011
@jscroft, off topic and insane.
JChen
5 / 5 (2) Jan 10, 2011
After reading the article, I still don't know the reason they deny the previous theory, even after reading their articles. Or this is an unpublished work? Can the editor provide more information?
jscroft
1 / 5 (2) Jan 11, 2011
@qmurphy, humorless and hysterical. But at least the shoe fits.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.