Induced pluripotent stem cells from foetal skin cells, embryonic stem cells display comparable potential for derivation

Jan 04, 2011
Real hepatocytes, so-called primary hepatocytes (A), hepatocyte-like cells from embryonic stem cells (B) and induced pluripotent stem cells from foetal skin cells (C). Gene expression of induced pluripotent stem cells (iPSCs), human embryonic stem cells (hESCs), hepatocytes derived from them (Hep-iPSCs, Hep-hESCs) and foetal hepatocytes. Although the hepatocyte-like cells from embryonic stem cells and induced pluripotent stem cells differ from primary hepatocytes, they still share ca. 53 per cent of gene expression with these cells. Image: Max Planck Institute for Molecular Genetics

(PhysOrg.com) -- Numerous patients suffering from chronic liver diseases are currently receiving inadequate treatment due to the lack of organs donated for transplantation. However, hepatocytes derived from induced pluripotent stem cells (iPSCs) could offer an alternative for the future. Scientists from the Max Planck Institute for Molecular Genetics in Berlin compared hepatocytes from embryonic stem cells with hepatocytes from iPS cells and found that their gene expression is very similar. Nevertheless, in comparison to "real" hepatocytes, just under half of the genes exhibited a different gene expression. Therefore, the gene expression of hepatocytes derived from iPS cells still requires adaptation before the cells could be used in the treatment of liver diseases. (Stem Cells and Development, December 20, 2010)

Induced pluripotent stem cells can be derived from different cell types and have the same genetic background as their progenitors. Hepatocytes derived from iPSCs therefore constitute an ideal point of departure for future regenerative therapy, as immune rejection between donor and host cells can be avoided.

In their study, the Max Planck scientists compared hepatocyte-like cells derived from iPS cells and embryonic stem cells with "real" hepatocytes in early and later stages of development. Justyna Jozefczuk from the Max Planck Institute for explains: "It is the only way to determine actual differences between the cell types, and any flaws still present in the ‘synthetic’ hepatocytes". The scientists were able to show that the of hepatocytes based on embryonic stem cells and iPSCs is about 80 per cent similar. However, compared to isolated cells from the foetal human liver, the gene expression match is only 53 per cent.

Hepatocyte-like cells from iPSCs and activate many of the typical liver proteins, e.g., albumin, alpha-fetoprotein and cytokeratin 18. Moreover, the "synthetic" hepatocytes can store glycogen and produce urea, just like the "real" hepatocytes. In addition, they are able to absorb and break down foreign molecules. In contrast, the around the enzyme group cytochrome P450 in the iPSCs and in real hepatocytes display different expression levels. These enzymes metabolise, among other things, drugs and foreign substances. "This knowledge not only helps us better understand the causes of liver diseases; it also allows us to develop more efficient, patient-specific drugs", says James Adjaye from the Max Planck Institute for Molecular Genetics.

Explore further: Microbes provide insights into evolution of human language

More information: Jozefczuk J, Prigione A, Chavez L, and Adjaye J. Comparative analysis of human Embryonic Stem Cell and induced Pluripotent Stem Cell-derived hepatocyte-like cells reveals current drawbacks and possible strategies for improved differentiation. Stem Cells and Development, December 20, 2010, doi:10.1089/scd.2010.0361

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

Cell division speed influences gene architecture

21 hours ago

Speed-reading is a technique used to read quickly. It involves visual searching for clues to meaning and skipping non-essential words and/ or sentences. Similarly to humans, biological systems are sometimes ...

Secret life of cells revealed with new technique

23 hours ago

(Phys.org) —A new technique that allows researchers to conduct experiments more rapidly and accurately is giving insights into the workings of proteins important in heart and muscle diseases.

In the 'slime jungle' height matters

Apr 23, 2014

(Phys.org) —In communities of microbes, akin to 'slime jungles', cells evolve not just to grow faster than their rivals but also to push themselves to the surface of colonies where they gain the best access ...

Queuing theory helps physicist understand protein recycling

Apr 22, 2014

We've all waited in line and most of us have gotten stuck in a check-out line longer than we would like. For Will Mather, assistant professor of physics and an instructor with the College of Science's Integrated Science Curriculum, ...

User comments : 0

More news stories

Phase transiting to a new quantum universe

(Phys.org) —Recent insight and discovery of a new class of quantum transition opens the way for a whole new subfield of materials physics and quantum technologies.

Imaging turns a corner

(Phys.org) —Scientists have developed a new microscope which enables a dramatically improved view of biological cells.