Induced pluripotent stem cells from foetal skin cells, embryonic stem cells display comparable potential for derivation

Jan 04, 2011
Real hepatocytes, so-called primary hepatocytes (A), hepatocyte-like cells from embryonic stem cells (B) and induced pluripotent stem cells from foetal skin cells (C). Gene expression of induced pluripotent stem cells (iPSCs), human embryonic stem cells (hESCs), hepatocytes derived from them (Hep-iPSCs, Hep-hESCs) and foetal hepatocytes. Although the hepatocyte-like cells from embryonic stem cells and induced pluripotent stem cells differ from primary hepatocytes, they still share ca. 53 per cent of gene expression with these cells. Image: Max Planck Institute for Molecular Genetics

(PhysOrg.com) -- Numerous patients suffering from chronic liver diseases are currently receiving inadequate treatment due to the lack of organs donated for transplantation. However, hepatocytes derived from induced pluripotent stem cells (iPSCs) could offer an alternative for the future. Scientists from the Max Planck Institute for Molecular Genetics in Berlin compared hepatocytes from embryonic stem cells with hepatocytes from iPS cells and found that their gene expression is very similar. Nevertheless, in comparison to "real" hepatocytes, just under half of the genes exhibited a different gene expression. Therefore, the gene expression of hepatocytes derived from iPS cells still requires adaptation before the cells could be used in the treatment of liver diseases. (Stem Cells and Development, December 20, 2010)

Induced pluripotent stem cells can be derived from different cell types and have the same genetic background as their progenitors. Hepatocytes derived from iPSCs therefore constitute an ideal point of departure for future regenerative therapy, as immune rejection between donor and host cells can be avoided.

In their study, the Max Planck scientists compared hepatocyte-like cells derived from iPS cells and embryonic stem cells with "real" hepatocytes in early and later stages of development. Justyna Jozefczuk from the Max Planck Institute for explains: "It is the only way to determine actual differences between the cell types, and any flaws still present in the ‘synthetic’ hepatocytes". The scientists were able to show that the of hepatocytes based on embryonic stem cells and iPSCs is about 80 per cent similar. However, compared to isolated cells from the foetal human liver, the gene expression match is only 53 per cent.

Hepatocyte-like cells from iPSCs and activate many of the typical liver proteins, e.g., albumin, alpha-fetoprotein and cytokeratin 18. Moreover, the "synthetic" hepatocytes can store glycogen and produce urea, just like the "real" hepatocytes. In addition, they are able to absorb and break down foreign molecules. In contrast, the around the enzyme group cytochrome P450 in the iPSCs and in real hepatocytes display different expression levels. These enzymes metabolise, among other things, drugs and foreign substances. "This knowledge not only helps us better understand the causes of liver diseases; it also allows us to develop more efficient, patient-specific drugs", says James Adjaye from the Max Planck Institute for Molecular Genetics.

Explore further: Life's extremists may be an untapped source of antibacterial drugs

More information: Jozefczuk J, Prigione A, Chavez L, and Adjaye J. Comparative analysis of human Embryonic Stem Cell and induced Pluripotent Stem Cell-derived hepatocyte-like cells reveals current drawbacks and possible strategies for improved differentiation. Stem Cells and Development, December 20, 2010, doi:10.1089/scd.2010.0361

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

Cohesin molecule safeguards cell division

Nov 21, 2014

The cohesin molecule ensures the proper distribution of DNA during cell division. Scientists at the Research Institute of Molecular Pathology (IMP) in Vienna can now prove the concept of its carabiner-like ...

Nail stem cells prove more versatile than press ons

Nov 21, 2014

There are plenty of body parts that don't grow back when you lose them. Nails are an exception, and a new study published in the Proceedings of the National Academy of Sciences (PNAS) reveals some of the r ...

Scientists develop 3-D model of regulator protein bax

Nov 21, 2014

Scientists at Freie Universität Berlin, the University of Tubingen, and the Swiss Federal Institute of Technology in Zurich (ETH) provide a new 3D model of the protein Bax, a key regulator of cell death. When active, Bax ...

Researchers unwind the mysteries of the cellular clock

Nov 20, 2014

Human existence is basically circadian. Most of us wake in the morning, sleep in the evening, and eat in between. Body temperature, metabolism, and hormone levels all fluctuate throughout the day, and it ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.