Single photon management for quantum computers advanced by NIST

Jan 20, 2011 By Chad Boutin
Gated photon source starts with the bright green 532nm wavelength laser beam that strikes a crystal (bright green spot, center) and is converted into pairs of photons at 810nm (false colored blue here, it's at the end of the red spectrum) and 1550nm (in the infrared, false colored red here.). The "blue" beam is the herald channel, the "red" beam goes through a spool of optical fiber (right) to delay it long enough for the ga6te to open or shut. Credit: Brida, INRIM

(PhysOrg.com) -- The quantum computers of tomorrow might use photons, or particles of light, to move around the data they need to make calculations, but photons are tricky to work with. Two new papers by researchers working at the National Institute of Standards and Technology have brought science closer to creating reliable sources of photons for these long-heralded devices.

In principle, quantum computers can perform calculations that are impossible or impractical using conventional computers by taking advantage of the peculiar rules of . To do this, they need to operate on things that can be manipulated into specific quantum states. Photons are among the leading contenders.

The new NIST papers address one of the many challenges to a practical quantum computer: the need for a device that produces photons in ready quantities, but only one at a time, and only when the computer's processor is ready to receive them. Just as garbled data will confuse a standard computer, an information-bearing that enters a quantum processor together with other particles—or when the processor is not expecting it—can ruin a calculation.

The single-photon source has been elusive for nearly two decades, in part because no method of producing these particles individually is ideal. "It's a bit like playing a game of whack-a-mole, where solving one problem creates others," says Alan Migdall of NIST's Optical Technology Division. "The best you can do is keep all the issues under control somewhat. You can never get rid of them."

The team's first paper addresses the need to be certain that a photon is indeed coming when the processor is expecting it, and that none show up unexpected. Many kinds of single-photon sources create a pair of photons and send one of them to a detector, which tips off the processor to the fact that the second, information-bearing photon is on its way. But since detectors are not completely accurate, sometimes they miss the "herald" photon—and its twin zips into the processor, gumming up the works.

The team effort, in collaboration with researchers from the Italian metrology laboratory L'Istituto Nazionale di Ricerca Metrologica (INRIM), handled the issue by building a simple gate into the source. When a herald photon reaches the detector, the gate opens, allowing the second photon past. "You get a photon when you expect one, and you don't get one when you don't," Migdall says. "It was an obvious solution; others proposed it long ago, we were just the first ones to build it. It makes the single photon source better."

In a second paper, the NIST team describes a photon source to address two other requirements. Quantum computers will need many such sources working in parallel, so sources must be able to be built in large numbers and operate reliably; and so that the computer can tell the photons apart, the sources must create multiple individual photons, but all at different wavelengths. The team outlines a way to create just such a source out of silicon, which has been well-understood by the electronics industry for decades as the material from which standard computer chips are built.

"Ordinarily a particular material can produce only pairs in a specific pair of wavelengths, but our design allows production of photons at a number of regular and distinct wavelengths simultaneously, all from one source," Migdall says. "Because the design is compatible with microfabrication techniques, this accomplishment is the first step in the process of creating sources that are part of integrated circuits, not just prototype computers that work in the hothouse of the lab."

Explore further: Precision gas sensor could fit on a chip

More information:
-- G. Brida, I. et al. Experimental realization of a low-noise heralded single-photon source. Optics Express, Jan. 14, 2011, pp. 1470 – 1483.
-- J. Chen, et al. Frequency-bin entangled comb of photon pairs from a Silicon-on-Insulator micro-resonator. Optics Express, Jan. 14, 2011, pp. 1484 – 1492.

Related Stories

Mass weddings -- NIST's new efficient 2-photon source

Apr 12, 2007

For a variety of applications in physics and technology, ranging from quantum information theory to telecommunications, it’s handy to have access to pairs of photons created simultaneously, with a chosen ...

Shining light in quantum computing

Sep 12, 2006

University of Queensland scientist Devon Biggerstaff is investigating ways to manipulate light in a process that will help shape future supercomputers and communication technology.

Recommended for you

New filter could advance terahertz data transmission

Feb 27, 2015

University of Utah engineers have discovered a new approach for designing filters capable of separating different frequencies in the terahertz spectrum, the next generation of communications bandwidth that ...

The super-resolution revolution

Feb 27, 2015

Cambridge scientists are part of a resolution revolution. Building powerful instruments that shatter the physical limits of optical microscopy, they are beginning to watch molecular processes as they happen, ...

Precision gas sensor could fit on a chip

Feb 27, 2015

Using their expertise in silicon optics, Cornell engineers have miniaturized a light source in the elusive mid-infrared (mid-IR) spectrum, effectively squeezing the capabilities of a large, tabletop laser onto a 1-millimeter ...

A new X-ray microscope for nanoscale imaging

Feb 27, 2015

Delivering the capability to image nanostructures and chemical reactions down to nanometer resolution requires a new class of x-ray microscope that can perform precision microscopy experiments using ultra-bright ...

New research signals big future for quantum radar

Feb 26, 2015

A prototype quantum radar that has the potential to detect objects which are invisible to conventional systems has been developed by an international research team led by a quantum information scientist at the University ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

PS3
not rated yet Jan 20, 2011
maybe send the photons through something like vapor
and what gets through 1st use that, any photon that comes at later time gets rejected by mirrors.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.