NRL begins field tests of laser acoustic propagation

January 12, 2011
Housed in a floating structure, the Nd:YAG laser (bottom left) generates underwater acoustic pulses, which travel to a distant hydrophone equipped boat (bottom right). Credit: U.S. Naval Research Laboratory (2010)

An NRL research team led by physicist, Dr. Ted Jones, Plasma Physics Division, performed the first successful long distance acoustic propagation and shock generation demonstration of their novel underwater photo-ionization laser acoustic source. These tests, performed at the Lake Glendora Test Facility of Naval Surface Warfare Center-Crane, expanded on their earlier laboratory research on pulsed laser propagation through the atmosphere.

Using a pulsed Nd:YAG (Neodymium-doped Yttrium Aluminum Garnet) 532 nanometer wavelength housed in a floating platform, pulses were directed by steering mirrors down through a focusing lens and into the water surface. Each laser pulse produced an acoustic pulse with a sound pressure level of approximately 190 decibels (dBs), which was detected and measured by boat-mounted hydrophones at distances up to 140 meters, roughly the length and a half of a football field. Prior laboratory acoustic propagation distances were limited to about three meters.

"The goal of this laser acoustic source development is to enable efficient remote acoustic generation from compact airborne and ship-borne lasers, without the need for any source hardware in the water," said Jones. "This new acoustic source has the potential to expand and improve both Naval and commercial underwater acoustic applications."

The driving laser pulse has the ability to travel through both air and water, so that a compact laser on either an underwater or airborne platform can be used for remote acoustic generation. A properly tailored laser pulse has the ability to travel many hundreds of meters through air, remaining relatively unchanged, then quickly compress upon entry into the water. Atmospheric laser propagation is useful for applications where airborne lasers produce underwater acoustic signals without any required hardware in the water, a highly useful and efficient tool for undersea communications from aircraft.

Explore further: Undersea WiFi can be made faster, says researcher

Related Stories

Undersea WiFi can be made faster, says researcher

September 3, 2007

As the United States and Canada take their first step toward establishing a cabled ocean observatory, a University of Missouri-Rolla researcher is trying to improve the speed of wireless underwater communication.

Lasers generate underwater sound

September 4, 2009

Scientists at the Naval Research Laboratory (NRL) are developing a new technology for use in underwater acoustics. The new technology uses flashes of laser light to remotely create underwater sound. The new acoustic source ...

Plasma as a fast optical switch

November 8, 2010

Laser uses relativistic effects to turn otherwise opaque plasma transparent, creating an ultra-fast optical switch useful in next-generation particle accelerators.

Navigating underwater using spiral sound

November 17, 2010

With the increased use of underwater robotics in both Navy and commercial applications, underwater navigation becomes more and more important. As researchers attempt to make these vehicles smaller and less expensive, simple ...

Recommended for you

Quantum matter stuck in unrest

July 31, 2015

Using ultracold atoms trapped in light crystals, scientists from the MPQ, LMU, and the Weizmann Institute observe a novel state of matter that never thermalizes.

New blow for 'supersymmetry' physics theory

July 27, 2015

In a new blow for the futuristic "supersymmetry" theory of the universe's basic anatomy, experts reported fresh evidence Monday of subatomic activity consistent with the mainstream Standard Model of particle physics.

Rogue wave theory to save ships

July 29, 2015

Physicists have found an explanation for rogue waves in the ocean and hope their theory will lead to devices to warn ships and save lives.

Researchers build bacteria's photosynthetic engine

July 29, 2015

Nearly all life on Earth depends on photosynthesis, the conversion of light energy into chemical energy. Oxygen-producing plants and cyanobacteria perfected this process 2.7 billion years ago. But the first photosynthetic ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.