Nanosponges harvest rare cancer marker from blood

January 19, 2011

Cancer researchers have long hypothesized that tumors release small amounts of proteins that could serve as earlier diagnostic indicators of cancer, but the search for such biomarkers has been hampered by the presence of large quantities of other proteins, such albumin, found in the blood and by the fact that these trace proteins are often unstable in blood. Now, an international research team from the United States and Italy has shown that it can use a new type of nanoparticle to selectively trap specific families of proteins from blood and protect them from degradation by enzymes in blood.

Lance Liotta of George Mason University and Caterina Longo from the University of Moderna and Regio Emilia led this investigation. The U.S. and Italian team published its findings in the journal Experimental Dermatology.

Previously, this research team had developed a set of highly porous nanoparticles whose interiors were decorated with different types of "bait" molecules that could selectively harvest large families of low-abundance proteins from blood. These nanoparticles were designed to exclude the relatively large protein-degrading enzymes prevalent in blood, and hence, could protect the trapped proteins from being broken down before they could be analyzed. In this set of experiments, the investigators used the particles to collect potential biomarkers for from the blood of human patients with this aggressive form of . The researchers obtained blood from 29 patients with primary and as well as 26 patients with strange-looking moles that had not developed into melanomas.

The researchers found that levels of one particular , known as Bak, correlated highly with the development of moles into melanomas. These results were confirmed by histological examination of moles and melanoma tumors. The investigators note that although more patients need to be tested to confirm these results, it appears that serum Bak levels, measured after capture using these nanoparticles, could serve as a prognostic indicator for melanoma. The broader impact of this study lies with the demonstration that these baited can trap and protect rare proteins in human clinical blood samples and release those proteins for subsequent analysis for disease .

This work, which was supported in part by the National Cancer Institute, is detailed in a paper titled, "A novel biomarker harvesting nanotechnology identifies Bak as a candidate melanoma biomarker in serum." An abstract of this paper is available through PubMed.

Explore further: Scientists identify interacting proteins key to melanoma development, treatment

More information: View the complete abstract here: www.ncbi.nlm.nih.gov/pubmed/21158936

Related Stories

New strategy developed to diagnose melanoma

March 30, 2009

A UCSF research team has developed a technique to distinguish benign moles from malignant melanomas by measuring differences in levels of genetic markers. Standard microscopic examinations of biopsied tissue can be ambiguous ...

New biomarkers for predicting the spread of colon cancer

January 13, 2010

Scientists in China are reporting discovery of two proteins present in the blood, of people with colon cancer that may serve as the potential biomarkers for accurately predicting whether the disease will spread. Their study ...

Scientists improve biomarker detection technique

September 2, 2010

Scientists from NPL's Biotechnology group have developed a new strategy to enable quicker and more precise detection of biomarkers - proteins which indicate disease. The work marks a new research direction for the group, ...

Recommended for you

Reshaping the solar spectrum to turn light to electricity

July 28, 2015

When it comes to installing solar cells, labor cost and the cost of the land to house them constitute the bulk of the expense. The solar cells—made often of silicon or cadmium telluride—rarely cost more than 20 percent ...

Could stronger, tougher paper replace metal?

July 24, 2015

Researchers at the University of Maryland recently discovered that paper made of cellulose fibers is tougher and stronger the smaller the fibers get. For a long time, engineers have sought a material that is both strong (resistant ...

Changing the color of light

July 23, 2015

Researchers at the University of Delaware have received a $1 million grant from the W.M. Keck Foundation to explore a new idea that could improve solar cells, medical imaging and even cancer treatments. Simply put, they want ...

Wafer-thin material heralds future of wearable technology

July 27, 2015

UOW's Institute for Superconducting and Electronic Materials (ISEM) has successfully pioneered a way to construct a flexible, foldable and lightweight energy storage device that provides the building blocks for next-generation ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.