If junk DNA is useful, why is it not shared more equally?

January 31, 2011

The presence of introns in genes requires cells to process "messenger RNA" molecules before synthesizing proteins, a process that is costly and often error-prone. It was long believed that this was simply part of the price organisms paid for the flexibility to create new types of protein but recent work has made it clear that introns themselves have a number of important functions. And so attention is gradually shifting to asking why some organisms have so few introns and others so many.

It seems likely that new introns are added to DNA when double-stranded DNA breaks – which may arise from a variety of mechanisms – are not repaired "correctly" but the newly created ends are instead joined to other fragments of DNA. Farlow and colleagues at the Institute of Population Genetics of the University of Veterinary Medicine, Vienna reasoned that introns may be lost by a similar mechanism. An examination of areas of DNA where introns are known to have been lost in organisms such as worms and flies provides support for their idea.

DNA breaks may be treated in one of two ways: correct repair (by a relatively time-consuming process known as "homologous recombination") or the rapid and error-prone joining of non-homologous ends. The two pathways are essentially separate and can compete with each other for DNA breaks to work with. The scientists at the University of Veterinary Medicine, Vienna now suggest that species-specific differences in the relative activity of these two pathways might underlie the observed variation in intron number.

The theory represents a fundamental change in the way we think about the evolution of DNA. Evolution has seen periods of large scale intron loss alternating with periods of intron gain and this has been interpreted as the result of changing selection pressure. However, the rates at which single species have gained and lost introns throughout evolution have been found to vary in parallel, consistent with Farlow's notion that the two processes are related. The new theory provides an alternative interpretation: changes in the activities of the "homologous" and "non-homologous" pathways for repairing DNA breaks could cause introns to be lost faster than they are gained, or vice versa.

The idea is consistent with what we currently know about intron numbers, which range from a handful in some simple eukaryotes to more than 180,000 in the human genome. And as Farlow says, "Linking intron gain and loss to the repair of DNA breaks offers a neat explanation for how intron number can change over time. This theory may account for the huge diversity we seen in intron number between different species."

Explore further: Research reveals how cells process large genes

More information: The paper DNA double-strand break repair and the evolution of intron density by Ashley Farlow, Eshwar Meduri and Christian Schlötterer is published in the January issue of the journal Trends in Genetics (2011, Vol. 27, pp. 1-6). www.cell.com/trends/genetics/fulltext/S0168-9525%2810%2900210-6

Related Stories

Research reveals how cells process large genes

August 22, 2005

Important messages require accurate transmission. Big genes are especially challenging because they combine many coding segments (exons) that lie between long stretches of non-coding elements (introns). During processing, ...

Yale scientists visualize the machinery of mRNA splicing

April 5, 2008

Recent research at Yale provided a glimpse of the ancient mechanism that helped diversify our genomes; it illuminated a relationship between gene processing in humans and the most primitive organisms by creating the first ...

Real-time observation of the DNA-repair mechanism

May 22, 2008

For the first time, researchers at Delft University of Technology have witnessed the spontaneous repair of damage to DNA molecules in real time. They observed this at the level of a single DNA molecule. Insight into this ...

Introns: A mystery renewed

December 10, 2009

The sequences of nonsense DNA that interrupt genes could be far more important to the evolution of genomes than previously thought, according to a recent Science report by Indiana University Bloomington and University of ...

Recommended for you

Parasitized bees are self-medicating in the wild, study finds

September 1, 2015

Bumblebees infected with a common intestinal parasite are drawn to flowers whose nectar and pollen have a medicinal effect, a Dartmouth-led study shows. The findings suggest that plant chemistry could help combat the decline ...

Orangutan females prefer dominant, cheek-padded males

September 1, 2015

Unlike most mammals, mature male orangutans exhibit different facial characteristics: some develop large "cheek pads" on their faces; other males do not. A team of researchers studied the difference in reproductive success ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.