New hope in fight against Huntington's disease

Jan 10, 2011
This is a visualisation of individual baker’s yeast cells (Saccharomyces cerevisiae) by scanning electron microscopy. Credit: University of Leicester

Hope for new ways of treating devastating neurodegenerative disorders such as Huntington's disease has been raised by a trans-Atlantic team of researchers thanks to the use of cutting-edge genetic techniques.

Led by the University of Leicester, scientists from the University of Lisbon (led by Dr Tiago Outeiro) and University of California at San Francisco (led by Dr Paul Muchowski) collaborated to generate novel approaches for tackling the diseases. Their work, funded by the Medical Research Council, is published in The .

At Leicester, working simply with baker's yeast, a team of biological scientists examined aspects of . These yeast are extremely well-characterised and have powerful and facile genetics which allow researchers to rapidly interrogate this system at a genome-wide level. Research in recent years has found that baker's yeast can be used to study mechanisms underlying disease pathology, and this simple organism has been used to identify several promising candidate drug targets for neurodegenerative disorders, including Huntington's disease.

Flaviano Giorgini, lead author of the research paper at the University of Leicester, said: "My research group is interested in using genetics and genomics approaches to better understand the fatal neurodegenerative disorders of Huntington's disease and Parkinson's disease.

"By clarifying the genes and involved in these diseases we hope to identify novel strategies for treatment and therapy of these disorders. In our work we use simple, yet powerful genetic organisms such as baker's and to model aspects of these devastating diseases.

A volcano plot shows genes differentially expressed in a yeast model of Huntington's disease. Credit: University of Leicester

"In the current study we have used a novel functional genomics profiling approach to identify genes which can protect these simple organisms from disease symptoms. We then used computational approaches to uncover a network of interactions amongst these genes, which has shed light on the mechanisms underlying this disorder."

Using the approach above, the scientists found that many of the protective genes are involved in translation – a cellular process in which messenger RNA (mRNA) is decoded by the ribosome to produce specific proteins. This is particularly intriguing as this process has not been implicated in Huntington's disease in the past.

This is important because recent work indicates that pharmacological modulation of translation may represent a promising avenue for treatment of Parkinson's disease. Therefore, this new research strongly dovetails with these observations and suggests that similar drug treatment may be beneficial in Huntington's disease.

Dr Giorgini, of the Department of Genetics, said: "Our research has taken advantage of cutting edge genomics approaches using a simple model organism to identify a novel area for potential therapeutic intervention for Huntington's disease.

"If our findings are validated by further studies, it might suggest a novel therapeutic approach for this devastating disorder - which is critical as currently there are no treatments for onset or progression of symptoms."

Explore further: Abnormal properties of cancer protein revealed in fly eyes

More information: Functional Gene Expression Profiling in Yeast Implicates Translational Dysfunction in Mutant Huntington Toxicity, The Journal of Biological Chemistry, Vol. 286, Issue 1, 410-419, JANUARY 7, 2011. DOI:10.1074/jbc.M110.101527

Related Stories

Yeast holds clues to Parkinson's disease

Sep 09, 2010

Yeast could be a powerful ally in the discovery of new therapeutic drugs to treat Parkinson's disease says a scientist presenting his work at the Society for General Microbiology's autumn meeting in Nottingham today.

Recommended for you

Chemical biologists find new halogenation enzyme

Sep 15, 2014

Molecules containing carbon-halogen bonds are produced naturally across all kingdoms of life and constitute a large family of natural products with a broad range of biological activities. The presence of halogen substituents ...

Protein secrets of Ebola virus

Sep 15, 2014

The current Ebola virus outbreak in West Africa, which has claimed more than 2000 lives, has highlighted the need for a deeper understanding of the molecular biology of the virus that could be critical in ...

Protein courtship revealed through chemist's lens

Sep 15, 2014

Staying clear of diseases requires that the proteins in our cells cooperate with one another. But, it has been a well-guarded secret how tens of thousands of different proteins find the correct dancing partners ...

User comments : 0