Controlled heating of gold nanoparticles

Jan 17, 2011
Controlled heating of gold nanoparticles
Tiny gold particles are heated using infrared light from an optical tweezer and the hot gold particle is brought closer and closer towards an artificial cell membrane. When you know how the lipids melt you can observe them and calculate the exact temperature of the particles.

Tiny gold particles are good for transferring heat and could be a promising tool for creating localized heating in, for example, a living cell. In new experiments, German researchers at the Niels Bohr Institute have measured the temperature of nano-sized gold particles with extreme precision and have examined their ability to melt the lipid membranes surrounding cells, paving the way for dissolving sick cells. The results have been published in the esteemed journal Nano Letters.

Gold nano-particles have a strong interaction with light in relation to their size and it is precisely their physical size that gives them different colours. Its colour is the result of how strongly a gold particle scatters and absorbs light at different wavelengths. Therefore, when the light heats up the gold particle, the colour has significance for its temperature.

The research was conducted in the Optical Tweezers Group at the Niels Bohr Institute. Optical tweezers are sophisticated instruments, which using an extremely focused laser light can trap and hold on a . A nanometer is a thousandth of a millimeter and therefore very small. The gold particles are between 60 and 200 in size.

"The particles can be heated using from the optical tweezers and by turning the light up and down you can control the heat", explains PhD student in biophysics, Anders Kyrsting, who conducted the research along with his colleagues from the group.

But exactly how hot do the extremely small gold particles get? It is important to know the precise temperature in order to have complete control over the situation. The particles are too small to measure directly, so you can instead measure indirectly by their effect.

Anders Kyrsting brought the hot gold particles closer and closer towards an artificial comprised of lipids. When quite close the lipids melt and if you know exactly when certain lipids melt you can use this to calculate the temperature of the gold particles. It turns out that the gold particles are able to reach several hundred degrees at a light intensity of less than 1 watt.

Gentle and effective

Having a hot particle means that you have a tool that you can use – a tiny little heat source, which is well-defined. By melting the lipids in a cell membrane the cell will be dissolved – killed. But only that cell.

"The heat decreases so rapidly that at just a radius of a gold particle from the surface, the heat is half the temperature than it is at the surface. That is to say, that a typical cell length away from the particle the heat will have decreased so much that it is harmless", explains Anders Kyrsting.

"The technique can also be used as a tool for changing temperatures in a few microseconds. When the temperature from the surface of a heated gold nanoparticle decreases several hundred degrees per micrometer, it is, for example, possible to have two separate states – a liquid and a more solid form in artificial cell systems consisting of small vesicles. Here the border surface between the two states will be very clear-cut, which is useful if you want to study cell membranes", explains Anders Kyrsting.

Explore further: Thinnest feasible nano-membrane produced

Provided by Niels Bohr Institute

not rated yet

Related Stories

The dance of hot nanoparticles

Sep 08, 2010

( -- "Brownian motion is a very old concept," Klaus Kroy tells "The laws explaining it were formulated more than a century ago by Albert Einstein. However, we are finding some intere ...

Shimmering Colours Which Change With Temperature

Dec 02, 2005

Scientists at the Max Planck Institute of Colloids and Interfaces have used ion bombardment and gold metallisation to produce a new family of particles whose bonding behaviour can be chemically tailored. With ...

Gold nanoparticles for controlled drug delivery

Dec 30, 2008

( -- Using tiny gold particles and infrared light, MIT researchers have developed a drug-delivery system that allows multiple drugs to be released in a controlled fashion.

Using gold particles to fight cancer

Oct 22, 2010

Researchers at the MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, The Netherlands, are developing a method of detecting and treating tumors with the help of gold particles ...

Recommended for you

Thinnest feasible nano-membrane produced

Apr 17, 2014

A new nano-membrane made out of the 'super material' graphene is extremely light and breathable. Not only can this open the door to a new generation of functional waterproof clothing, but also to ultra-rapid filtration. The ...

Wiring up carbon-based electronics

Apr 17, 2014

Carbon-based nanostructures such as nanotubes, graphene sheets, and nanoribbons are unique building blocks showing versatile nanomechanical and nanoelectronic properties. These materials which are ordered ...

Making 'bucky-balls' in spin-out's sights

Apr 16, 2014

( —A new Oxford spin-out firm is targeting the difficult challenge of manufacturing fullerenes, known as 'bucky-balls' because of their spherical shape, a type of carbon nanomaterial which, like ...

User comments : 0

More news stories

'Exotic' material is like a switch when super thin

( —Ever-shrinking electronic devices could get down to atomic dimensions with the help of transition metal oxides, a class of materials that seems to have it all: superconductivity, magnetoresistance ...

Airbnb rental site raises $450 mn

Online lodging listings website Airbnb inked a $450 million funding deal with investors led by TPG, a source close to the matter said Friday.

Health care site flagged in Heartbleed review

People with accounts on the enrollment website for President Barack Obama's signature health care law are being told to change their passwords following an administration-wide review of the government's vulnerability to the ...